
Revisiting Underapproximate Reachability for1

Multipushdown Systems2

S. Akshay1, Paul Gastin2, Krishna S1, and Sparsa Roychowdhury1
3

1 IIT Bombay, Mumbai, India4

{akshayss,krishnas,sparsa}@cse.iitb.ac.in5

2 ENS Paris-Saclay, France6

paul.gastin@lsv.fr7

Abstract. Boolean programs with multiple recursive threads can be8

captured as pushdown automata with multiple stacks. This model is9

Turing complete, and hence, one is often interested in analyzing a10

restricted class which still captures useful behaviors. In this paper, we11

propose a new class of bounded underapproximations for multipushdown12

systems, which subsumes most existing classes. We develop an efficient13

algorithm for solving the under-approximate reachability problem, which14

is based on efficient fix-point computations. We implement it in our15

tool BHIM and illustrate its applicability by generating a set of relevant16

benchmarks and examining its performance. As an additional takeaway17

BHIM solves the binary reachability problem in pushdown automata. To18

show the versatility of our approach, we then extend our algorithm to19

the timed setting and provide the first implementation that can handle20

timed multi-pushdown automata with closed guards.21

Keywords: Multipushdown Systems, Underapproximate Reachability, Timed22

pushdown automata23

1 Introduction24

The reachability problem for pushdown systems with multiple stacks is known25

to be undecidable. However, multi-stack pushdown automata (MPDA hereafter)26

represent a theoretically concise and analytically useful model of multi-threaded27

recursive programs with shared memory. As a result, several previous works in28

the literature have proposed different under-approximate classes of behaviors29

of MPDA that can be analyzed effectively, such as Round Bounded, Scope30

Bounded, Context Bounded and Phase Bounded [1,2,3,4,5,6]. From a practical31

point of view, these underapproximations has led to efficient tools including,32

GetaFix [7], SPADE [8]. It has also been argued (e.g., see [9]) that such bounded33

underapproximations suffice to find several bugs in practice. In many such tools34

efficient fix-point techniques are used to speed-up computations.35

We extend known fix-point based approaches by developing a new algorithm36

that can handle a larger class of bounded underapproximations than bounded37

context and bounded scope for multi-pushdown systems while remaining efficiently38

implementable. This algorithm works for a new class of underapproximate39

behaviors called hole bounded behaviors, which subsumes context or scope40

bounded underapproximations, and is orthogonal to phase bounded underapproximations.41

A “hole” is a maximal sequence of push operations of a fixed stack, interspersed42

with well-nested sequences of any stack. Thus, in a sequence α = βγ where β =43

[push1(push2push3 pop3pop2)push1(push3pop3)]10 and γ = push2push1pop2pop1(pop1)20,44

β is a hole wrt stack 1. The suffix γ has 2 holes (the push2 and the push1). The45

number of context switches in α is > 50, and so is the number of changes in scope,46

while α is 3-hole bounded. A (k-)hole bounded sequence is one such, where, at47

any point of the computation, the number of holes are bounded (by k). We show48

that the class of hole bounded sequences subsumes most of the previously defined49

classes of underapproximations and is, in fact, contained in the very generic50

class of tree-width bounded sequences. This immediately shows decidability of51

reachability for our class.52

Analyzing the more generic class of tree-width bounded sequences is often53

much more difficult; for instance, building bottom-up tree automata for this54

purpose does not scale very well as it explores a large (and often useless) state55

space. Our technique is radically different from using tree automata. Under the56

hole-bounded assumption, we pre-compute information regarding well-nested57

sequences and holes using fix-point computations and use them in our algorithm.58

Using efficient data structures to implement this approach, we develop a tool59

(BHIM) for Bounded Hole reachability in Multistack pushdown systems.60

Highlights of BHIM.61

• Two significant aspects of the fix-point approach in BHIM are: we efficiently solve62

the binary reachability problem for pushdown automata. i.e., BHIM computes63

all pairs of states (s, t) such that t is reachable from s with empty stacks. This64

allows us to go beyond reachability and handle some liveness questions; (ii) we65

pre-compute the set of pairs of states that are endpoints of holes. This allows us66

to greatly limit the search for an accepting run.67

• While the fix-point approach solves (binary) reachability efficiently, it does not68

a priori produce a witness of reachability. We remedy this situation by proposing69

a backtracking algorithm, which cleverly uses the computations done in the70

fix-point algorithm, to generate a witness efficiently.71

• BHIM is parametrized w.r.t the hole bound: if non-emptiness can be checked72

or witnessed by a well-nested sequence (this is an easy witness and BHIM looks73

for easy witnesses first, then gradually increases complexity, if no easy witness is74

found), then it is sufficient to have the hole bound 0; increasing this complexity75

measure as required to certify non-emptiness gives an efficient implementation, in76

the sense that we search for harder witnesses only when no easier witnesses (w.r.t77

this complexity measure) exist. In all examples as described in the experimental78

section, a small (less than 4) bound suffices and we expect this to be the case for79

most practical examples.80

• Finally, extend our approach to handle timed multi-stack pushdown systems.81

This shows the versatility of our approach and also requires us to solve several82

2

technical challenges which are specific to the timed setting. Implementing this83

approach in BHIM makes it, to the best of our knowledge, the first tool that can84

analyze timed multi-stack pushdown automata (TMPDA) with closed guards.85

We analyze the performance of BHIM in practice, by considering benchmarks86

from the literature, and generating timed variants of some of them. We modeled87

two variants of the Bluetooth example [10,8] and BHIM was able to detect three88

errors (of which it seems only two were already known). Likewise, for an example89

of a multiple producer consumer model, BHIM could detect bugs by finding90

witnesses having just 3 holes, while, it is unlikely that existing tools working91

on scope/context bounded underapproximations can handle them as the no. of92

switches in scope/context required would exceed 40 to find the bug. In the timed93

setting, one of the main challenges faced has been the unavailability of timed94

benchmarks; even in the untimed setting, many benchmarks were unavailable95

due to their proprietary nature. Nevertheless we tested our tool on 5 other96

benchmarks and 3 timed variants whose details, along with their parametric97

dependence plots, are given in Supplementary Material [11]. Due to lack of space98

proofs and technical details, especially in the timed setting are also in [11].99

Related Work. Among other under-approximations, scope bounded [3] subsumes100

context and round bounded underapproximations, and it also paves path for101

GetaFix [7], a tool to analyze recursive (and multi-threaded) boolean programs.102

As mentioned earlier hole-boundedness strictly subsumes scope boundedness. On103

the other hand, GetaFix uses symbolic approaches via BDDs, which is orthogonal104

to the improvements made in this paper. Indeed, our next step would be to105

build a symbolic version of BHIM which extends the hole-bounded approach to106

work with symbolic methods. Given that BHIM can already handle synthetic107

examples with 12-13 holes (see [11]), we expect this to lead to even more drastic108

improvements and applicability. For sequential programs, a summary-based109

algorithm is used in [7]; summaries are like our well-nested sequences, except that110

well-nested sequences admit contexts from different stacks unlike summaries. As111

a result, our class of bounded hole behaviors generalizes summaries. Many other112

different theoretical results like phase bounded [1], order bounded [12] which gives113

interesting underapproximations of MPDA, are subsumed in tree-width bounded114

behaviors, but they do not seem to have practical implementations. Adding115

real-time information to pushdown automata by using clocks or timed stacks has116

been considered, both in the discrete and dense-timed settings. Recently, there117

has been a flurry of theoretical results in the topic [13,14,15,16,17]. However,118

to the best of our knowledge none of these algorithms have been successfully119

implemented (except [17] which implements a tree-automata based technique120

for single-stack timed systems) for multi-stack systems. One reason is that these121

algorithms do not employ scalable fix-point based techniques, but instead depend122

on region automaton-based search or tree automata-based search techniques.123

2 Underapproximations in MPDA124

A multi-stack pushdown automaton (MPDA) is a tuple M = (S, ∆, s0,Sf , n,Σ, Γ)125

where, S is a finite non-empty set of locations, ∆ is a finite set of transitions,126

3

s0 ∈ S is the initial location, Sf ⊆ S is a set of final locations, n ∈ N is the127

number of stacks, Σ is a finite input alphabet, and Γ is a finite stack alphabet128

which contains ⊥. A transition t ∈ ∆ can be represented as a tuple (s, op, a, s′),129

where, s, s′ ∈ S are respectively, the source and destination locations of the130

transition t, a ∈ Σ is the label of the transition, and op is one of the following131

operations (1) nop, or no stack operation, (2) (↓i α) which pushes α ∈ Γ onto132

stack i ∈ {1, 2, . . . , n}, (3) (↑i α) which pops stack i if the top of stack i is α ∈ Γ .133

For a transition t = (s, op, a, s′) we write src(t) = s, tgt(t) = s′ and op(t) = op.134

At the moment we ignore the action label a but this will be useful later when we135

go beyond reachability to model checking. A configuration of the MPDA is a tuple136

(s, λ1, λ2, . . . , λn) such that, s ∈ S is the current location and λi ∈ Γ ∗ represents137

the current content of ith stack. The semantics of the MPDA is defined as follows:138

a run is accepting if it starts from the initial state and reaches a final state with139

all stacks empty. The language accepted by a MPDA is defined as the set of words140

generated by the accepting runs of the MPDA. Since the reachability problem for141

MPDA is Turing complete, we consider under-approximate reachability.142

A sequence of transitions is called complete if each push in that sequence143

has a matching pop and vice versa. A well-nested sequence denoted ws is144

defined inductively as follows: a possibly empty sequence of nop-transitions is145

ws, and so is the sequence t ws t′ where op(t) = (↓iα) and op(t′) = (↓iα) are a146

matching pair of push and pop operations of stack i. Finally the concatenation147

of two well-nested sequences is a well-nested sequence, i.e., they are closed under148

concatenation. The set of all well-nested sequences defined by an MPDA is149

denoted WS. If we visualize this by drawing edges between pushes and their150

corresponding pops, well-nested sequences have no crossing edges, as in

Bounded underapproximations for multistack timed pushdown systems 13

The witness algorithm uses k stacks to correctly implement the backtracking
procedure, to deal with k kinds of holes. We refer to these as witness stacks,
not to confuse with the stacks of the multistack system.

• Assume that the current pop operation is closing a hole of kind i. Search-
ing among possible push transitions, we identify the matching push
transition associated with this pop. On backtracking, this leads us to
a parent node with an atomic hole (see figure 3, the green atomic hole),
having a left end point as the push point, and the right end point as
the target of a ws (if any). We push onto the witness stack i, a bar-
rier (a delimiter symbol #) followed by ws and then the matching push
transition. The barrier is useful in segregating the contents of the wit-
ness stack, especially when we obtain two pop transitions of the same
stack ("1 and "5) in the reverse run which close two di↵erent holes
(the first blue hole and the second blue hole) of the same stack as in

Title Suppressed Due to Excessive Length 13

(the second blue hole and the first blue hole) of the same stack as in

26

Algorithm 12: Timed Automata Witness Generation

1 Function Witness((s1, v1), t, (s2, v2)):
Result: A sequence of transitions for an accepting run

2 forall s 2 S do
3 path = UselessPath(s1, s, v1);
4 if path 6= ; then
5 forall t1 2 [T] do
6 midPath = Witness((s, v1), t � t1, (s2, v2));
7 if midPath 6= ; then
8 return path ·t1·midPath;

9 forall � 2 � do
10 if UsefulTransition(�, v1) and Firable(�,(s, v1)) then
11 s3 = �.destination();
12 v3 = �.reset[v1];
13 midPath2 = Witness((s3, v3), t, (s2, v2));
14 if midPath2 6= ; then
15 return path ·t1·midPath2 ;

16 return path;

10.1 An Illustrating Example for Witness Generation

(s0, v0)

ws1

#1 #2 #3

ws2 ws3 ws4 ws5

#1 #2 "3 "2 #4 #5 "2 "5 "1 "4 "1 (sf , vf)

Fig. 6. A run with 3 holes. The blue holes correspond to stack 1, and the pink hole to
stack 2. A final state is reached from "1 on a discrete transition.

We illustrate the multistack case on an example. Assume that the path we
obtain on back tracking is as in Figure 6. Holes arising from pending pushes of
stack 1 are blue holes, and those from stack 2 are red holes in the figure. We
have two blue holes : the first blue hole has a left end point #1, and right end
point ws3. The second blue hole has a left end point #4, and right end point #5.
The pink hole has left end point #1 and right end point ws4.

1. From the final configuration (sf , vf), on backtracking, we obtain the pop
operation ("1). By the fixed point algorithm, this operation closes the first
blue hole, matching the first pending push #1. In the computation tree, the
parent node has the atomic blue hole consisting of just the #1. Notice also
that, in the parent node, this is the only blue hole, since the second blue hole
in figure 6 is closed, and hence does not exist in the parent node. We use
two witness stacks, a blue stack and a pink stack to track the information
with respect to the blue and pink holes. On encountering a pop transition

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node. As in the case above, we first identify the matching
push transition, and check if it agrees with the last atomic hole segment
in the parent. If so, we populate the witness stack i with the rightmost
atomic hole segment of the parent node (see figure 3). Each time we find a
pop on going up the run tree, we find the rightmost atomic hole segment
of the parent node, and keep pushing it on the stack, until we reach the
node which is obtained as a result of a hole creation. At this point, we
have completely recovered the entire hole information by backtracking,
and filling the stack with the atomic hole segments which constituted
this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

5 Experiments

We tested our implementation on di↵erent examples. Being first of its kind it
was di�cult for us to find proper benchmark examples to run and compare
our results. But we managed to get some well known examples from di↵erent
literatures. Most of them were untimed but we tried to add time in a relevant
way.

5.1 Bluetooth Driver [9]

Here we will first consider a Bluetooth device driver which uses two threads.
We will try to model this Bluetooth driver as shown in the Fig. 4. The driver
maintains a structure, and any thread can modify the values of the variables
in the structure. The variables in the structure can be listed as follows, a

See Appendix 9.1 for the full example.

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node (see Figure 3, the atomic green hole followed by the
atomic violet hole at the parent node of the atomic green hole). As in
the case above, we first identify the matching push transition, and check
if it agrees with the last atomic hole segment in the parent. If so, we
populate the witness stack i with the rightmost atomic hole segment of
the parent node (see Figure 3, the violet atomic segment is populated in
the stack). Each time we find a pop on going up the exploration graph,
we find the rightmost atomic hole segment of the parent node, and keep
pushing it on the stack, until we reach the node which is obtained as a
result of a hole creation. At this point, we have completely recovered the
entire hole information by backtracking, and filling the stack with the
atomic hole segments which constituted this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 9 shows an illustrating example.

151

and

Bounded underapproximations for multistack timed pushdown systems 13

The witness algorithm uses k stacks to correctly implement the backtracking
procedure, to deal with k kinds of holes. We refer to these as witness stacks,
not to confuse with the stacks of the multistack system.

• Assume that the current pop operation is closing a hole of kind i. Search-
ing among possible push transitions, we identify the matching push
transition associated with this pop. On backtracking, this leads us to
a parent node with an atomic hole (see figure 3, the green atomic hole),
having a left end point as the push point, and the right end point as
the target of a ws (if any). We push onto the witness stack i, a bar-
rier (a delimiter symbol #) followed by ws and then the matching push
transition. The barrier is useful in segregating the contents of the wit-
ness stack, especially when we obtain two pop transitions of the same
stack ("1 and "5) in the reverse run which close two di↵erent holes
(the first blue hole and the second blue hole) of the same stack as in

Title Suppressed Due to Excessive Length 13

(the second blue hole and the first blue hole) of the same stack as in

26

Algorithm 12: Timed Automata Witness Generation

1 Function Witness((s1, v1), t, (s2, v2)):
Result: A sequence of transitions for an accepting run

2 forall s 2 S do
3 path = UselessPath(s1, s, v1);
4 if path 6= ; then
5 forall t1 2 [T] do
6 midPath = Witness((s, v1), t � t1, (s2, v2));
7 if midPath 6= ; then
8 return path ·t1·midPath;

9 forall � 2 � do
10 if UsefulTransition(�, v1) and Firable(�,(s, v1)) then
11 s3 = �.destination();
12 v3 = �.reset[v1];
13 midPath2 = Witness((s3, v3), t, (s2, v2));
14 if midPath2 6= ; then
15 return path ·t1·midPath2 ;

16 return path;

10.1 An Illustrating Example for Witness Generation

(s0, v0)

ws1

#1 #2 #3

ws2 ws3 ws4 ws5

#1 #2 "3 "2 #4 #5 "2 "5 "1 "4 "1 (sf , vf)

Fig. 6. A run with 3 holes. The blue holes correspond to stack 1, and the pink hole to
stack 2. A final state is reached from "1 on a discrete transition.

We illustrate the multistack case on an example. Assume that the path we
obtain on back tracking is as in Figure 6. Holes arising from pending pushes of
stack 1 are blue holes, and those from stack 2 are red holes in the figure. We
have two blue holes : the first blue hole has a left end point #1, and right end
point ws3. The second blue hole has a left end point #4, and right end point #5.
The pink hole has left end point #1 and right end point ws4.

1. From the final configuration (sf , vf), on backtracking, we obtain the pop
operation ("1). By the fixed point algorithm, this operation closes the first
blue hole, matching the first pending push #1. In the computation tree, the
parent node has the atomic blue hole consisting of just the #1. Notice also
that, in the parent node, this is the only blue hole, since the second blue hole
in figure 6 is closed, and hence does not exist in the parent node. We use
two witness stacks, a blue stack and a pink stack to track the information
with respect to the blue and pink holes. On encountering a pop transition

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node. As in the case above, we first identify the matching
push transition, and check if it agrees with the last atomic hole segment
in the parent. If so, we populate the witness stack i with the rightmost
atomic hole segment of the parent node (see figure 3). Each time we find a
pop on going up the run tree, we find the rightmost atomic hole segment
of the parent node, and keep pushing it on the stack, until we reach the
node which is obtained as a result of a hole creation. At this point, we
have completely recovered the entire hole information by backtracking,
and filling the stack with the atomic hole segments which constituted
this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

5 Experiments

We tested our implementation on di↵erent examples. Being first of its kind it
was di�cult for us to find proper benchmark examples to run and compare
our results. But we managed to get some well known examples from di↵erent
literatures. Most of them were untimed but we tried to add time in a relevant
way.

5.1 Bluetooth Driver [9]

Here we will first consider a Bluetooth device driver which uses two threads.
We will try to model this Bluetooth driver as shown in the Fig. 4. The driver
maintains a structure, and any thread can modify the values of the variables
in the structure. The variables in the structure can be listed as follows, a

See Appendix 10.1 for the full example.

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node (see Figure 3, the atomic green hole followed by the
atomic violet hole at the parent node of the atomic green hole). As in
the case above, we first identify the matching push transition, and check
if it agrees with the last atomic hole segment in the parent. If so, we
populate the witness stack i with the rightmost atomic hole segment of
the parent node (see Figure 3, the violet atomic segment is populated in
the stack). Each time we find a pop on going up the exploration graph,
we find the rightmost atomic hole segment of the parent node, and keep
pushing it on the stack, until we reach the node which is obtained as a
result of a hole creation. At this point, we have completely recovered the
entire hole information by backtracking, and filling the stack with the
atomic hole segments which constituted this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

, where we have two stacks, depicted with red and violet edges. We152

emphasize that a well-nested sequence can have well-nested edges from any stack.153

In a sequence σ, a push (pop) is called a pending push (pop) if its matching154

pop (push) is not in the same sequence σ.155

Bounded Underapproximations. As mentioned in the introduction, different156

bounded under-approximations have been considered in the literature to get157

around the Turing completeness of MPDA. During a computation, a context is a158

sequence of transitions where only one stack or no stack is used. In context bounded159

computations the number of contexts are bounded [18]. A round is a sequence160

of (possibly empty) contexts for stacks 1, 2, . . . , n. Round bounded computations161

restrict the total number of rounds allowed [2,16,17]. Scope bounded computations162

generalize bounded context computations. Here, the context changes within any163

push and its corresponding pop is bounded [2,5,6]. A phase is a contiguous164

sequence of transitions in a computation, where we restrict pop to only one stack,165

but there are no restrictions on the pushes [1]. A phase bounded computation is166

one where the number of phase changes is bounded.167

Tree-width. A generic way of looking at them is to consider classes which have a168

bound on the tree-width [19]. In fact, the notions of split-width/clique-width/tree-169

width of communicating finite state machines/timed push down systems has been170

explored in [20], [21]. The behaviors of the underlying system are then represented171

4

as graphs. It has been shown in these references that if the family of graphs arising172

from the behaviours of the underlying system (say S) have a bounded tree-width,173

then the reachability problem is decidable for S via, tree-automata. However, this174

does not immediately give rise to an efficient implementation. The tree-automata175

approach usually gives non-deterministic or bottom-up tree automata, which176

when implemented in practice (see [17]) tend to blow up in size and explore a177

large and useless space. Hence there is a need for efficient algorithms, which178

exist for more specific underapproximations such as context-bounded (leading to179

fix-point algorithms and their practical implementations [7]).180

2.1 A new class of under-approximations181

Our goal is to bridge the gap between having practically efficient algorithms182

and handling more expressive classes of under-approximations for reachability of183

multi-stack pushdown systems. To do so, we define a bounded approximation184

which is expressive enough to cover previously defined practically interesting185

classes (such as context bounded etc), while at the same time allowing efficient186

decidable reachability tests, as we will see in the next section.187

Definition 1. (Holes). Let σ be complete sequence of transitions, of length n in188

a MPDA, and let ws be a (possibly empty) well-nested sequence.189

– A hole of stack i is a maximal factor of σ of the form (↓i ws)+, where190

ws ∈ WS. The maximality of the hole of stack i follows from the fact that191

any possible extension ceases to be a hole of stack i; that is, the only possible192

events following a maximal hole of stack i are a push ↓j of some stack j 6= i,193

or a pop of some stack j 6= i. In general, whenever we speak about a hole, the194

underlying stack is clear.195

– A push ↓i in a hole (of stack i) is called a pending push at (i.e., just before)196

a position x ≤ n, if its matching pop occurs in σ at a position z > x.197

– A hole (of stack i) is said to be open at a position x ≤ n, if there is a pending198

push ↓i of the hole at x. Let #x(hole) denote the number of open holes at199

position x. The hole bound of σ is defined as max1≤x≤|σ|#x(hole).200

– A hole segment of stack i is a prefix of a hole of stack i, ending in a ws,201

while an atomic hole segment of stack i is just the segment of the form ↓i ws.202

As an example, consider the sequence σ in Figure 1 of transitions of a MPDA203

having stacks 1,2 (denoted respectively red and blue). We use superscripts for204

each push, pop of each stack to distinguish the ith push, jth pop and so on of205

each stack. There are two holes of stack 1 (red stack) denoted by the red patches,206

s0

ws1

↓11 ↓21 ↓31
ws2 ws3 ws4

↓12 ↓22 ↑31 ↑21
ws5

↓41 ↓51 ↑22 ↑51 ↑12 ↑41 ↑11 sf

Fig. 1. A run σ with 2 holes (2 red patches) of the red stack and 1 hole (one blue patch)
of the blue stack.

5

and one hole of stack 2 (blue stack) denoted by the blue patch. The subsequence207

↓11↓21 ws2 of the first hole is not a maximal factor, since it can be extended by208

↓31 ws3 in the run σ, extending the hole. Consider the position in σ marked with209

↓12. At this position, there is an open hole of the red stack (the first red patch),210

and there is an open hole of the blue stack (the blue patch). Likewise, at the211

position ↑51, there are 2 open holes of the red stack (2 red patches) and one open212

hole of the blue stack 2 (the blue patch). The hole bound of σ is 3. The green213

patch consisting of ↑31, ↑21 and ws5 is a pop-hole of stack 1. Likewise, the pops ↑22,214

↑51, ↑12 are all pop-holes (of length 1) of stacks 2,1,2 respectively.215

Definition 2. (Hole Bounded Reachability Problem) Given a MPDA216

and K ∈ N, the K-hole bounded reachability problem is the following: Does there217

exist a K-hole bounded accepting run of the MPDA?218

Proposition 1. The tree-width of K-hole bounded MPDA behaviors is at most219

(2K + 3).220

A detailed proof of this Proposition is given in Appendix A.1. Once we have this,221

from [19][16][17], decidability and complexity follow immediately. Thus,222

Corollary 1. The K-hole bounded reachability problem for MPDA is decidable223

in O(|M|2K+3) where, M is the size of the underlying MPDA.224

Next, we turn to the expressiveness of this class wrt to the classical underapproximations225

of MPDA: first, the hole bounded class strictly subsumes scope bounded which226

already subsumes context bounded and round bounded classes. Also hole227

bounded MPDA and phase bounded MPDA are orthogonal.228

Proposition 2. Consider a MPDA M . For any K, let LK denote a set of229

sequences accepted by M which have number of rounds or number of contexts or230

scope bounded by K. Then there exists K ′ ≤ K such that LK is K ′ hole bounded.231

Moreover, there exist languages which are K hole bounded for some constant K,232

which are not K ′ round or context or scope bounded for any K ′. Finally, there233

exists a language which is accepted by phase bounded MPDA but not accepted by234

hole bounded MPDA and vice versa.235

Proof. We first recall that if a language L is K-round, or K-context bounded,236

then it is also K ′-scope bounded for some K ′ ≤ K [5,2]. Hence, we only show237

that scope bounded systems are subsumed by hole bounded systems.238

Let L be a K-scope bounded language, and let M be a MPDA accepting239

L. Consider a run ρ of w ∈ L in M . Assume that at any point i in the run ρ,240

#i(holes) = k′, and towards a contradiction, let, k′ > K. Consider the leftmost241

open hole in ρ which has a pending push ↓p whose pop ↑p is to the right of i.242

Since k′ > K is the number of open holes at i, there are at least k′ > K context243

changes in between ↓p and ↑p. This contradicts the K-scope bounded assumption,244

and hence k′ ≤ K.245

To show the strict containment, consider the visibly pushdown language [22] given246

by Lbh = {anbn(ap1cp1+1bp
′
1dp

′
1+1 · · · apncpn+1bp

′
ndp

′
n+1) | n, p1, p′1, . . . , pn, p′n ∈247

6

N}. A possible word w ∈ Lbh is a3b3 a2c3b2d3 a2c3bd2 ac2bd2 with a, b representing248

push in stack 1,2 respectively and c, d representing the corresponding matching249

pop from stack 1,2. A run ρ accepting the word w ∈ Lbh will start with a sequence250

of pushes of stack 1 followed by another sequence of pushes of stack 2. Note that,251

the number of the pushes n is same in both stacks. Then there is a group G252

consisting of a well-nested sequence of stack 1 (equal a and c) followed by a pop253

of the stack 1 (an extra c), another well-nested sequence of stack 2 (equal b and254

d) and a pop of the stack 2 (an extra d), repeated n times. From the definition255

of the hole, the total number of holes required in G is 0. But, we need 1 hole for256

the sequence of a’s and another for the sequence of b’s at the beginning of the257

run, which creates at most 2 holes during the run. Thus, the hole bound for any258

accepting run ρ is 2, and the language Lbh is 2-hole bounded.259

However, Lbh is not k-scope bounded for any k. Indeed, for each m ≥ 1,
consider the word wm = ambm(ac2bd2)m ∈ Lbh. It is easy to see that wm is
2m-scope bounded (the matching c, d of each a, b happens 2m context switches
later) but not k-scope bounded for k < 2m. It can be seen that Lbh is not k-phase
bounded either. Finally, L′ = {(ab)ncndn | n ∈ N} with a, b and c, d respectively
being push and pop of stack 1,2 is not hole-bounded but 2-phase bounded. ut

3 A Fix-point Algorithm for Hole Bounded Reachability260

In the previous section, we showed that hole-bounded underapproximations are261

a decidable subclass for reachability, by showing that this class has a bounded262

tree-width. However, as explained in the introduction, this does not immediately263

give a fix-point based algorithm, which has been shown to be much more efficient264

for other more restricted sub-classes, e.g., context-bounded. In this section, we265

provide such a fix-point based algorithm for the hole-bounded class and explain its266

advantages. Later we discuss its versatility by showing extensions and evaluating267

its performance on a suite of benchmarks.268

We describe the algorithm in two steps: first we give a simple fix-point based269

algorithm for the problem of 0-hole or well-nested reachability, i.e, reachability270

by a well-nested sequence without any holes. For the 0-hole case, our algorithm271

computes the reachability relation, also called the binary reachability problem [23].272

That is, we accept all pairs of states (s, s′) such that there is a well-nested run273

from s with empty stack to s′ with empty stack. Subsequently, we combine this274

binary reachability for well-nested sequences with an efficient graph search to275

obtain an algorithm for K-hole bounded reachability.276

Binary well-nested reachability for MPDA. Note that single stack PDA are277

a special case, since all runs are indeed well-nested.278

1. Transitive Closure: LetR be the set of tuples of the form (si, sj) representing279

that state sj is reachable from state si via a nop discrete transition. Such a280

sequence from si to sj is trivially well-nested. We take the TransitiveClosure281

of R using Floyd-Warshall algorithm [24]. The resulting set Rc of tuples282

answers the binary reachability for finite state automata (no stacks).283

7

Algorithm 1: Algorithm for Emptiness Checking of hole bounded MPDA
1 Function IsEmpty(M = (S, ∆, s0,Sf , n,Σ, Γ), K):

Result: True or False
2 WR := WellNestedReach(M); \\Solves binary reachability for pushdown system
3 if some (s0, s1) ∈ WR with s1 ∈ Sf then
4 return False;
5 forall i ∈ [n] do
6 AHSi := ∅; Seti := ∅;
7 forall (s, ↓i(α), a, s1) ∈ ∆ and (s1, s

′) ∈ WR do
8 AHSi := AHSi ∪ {(i, s, α, s′)}; Seti := Seti ∪ {(s, s′)};
9 HSi := {(i, s, s′) | (s, s′) ∈ TransitiveClosure(Seti)};

10 µ := [s0]; µ.NumberOfHoles := 0;
11 SetOfListsnew := {µ}; SetOfLists := ∅;
12 do
13 SetOfLists := SetOfLists ∪ SetOfListsnew;
14 SetOfListstodo := SetOfListsnew; SetOfListsnew := ∅;
15 forall µ′ ∈ SetOfListstodo do
16 if µ′.NumberOfHoles < K then
17 forall i ∈ [n] do

\\ Add hole for stack i

18 SetOfListsh := AddHolei(µ
′, HSi) \ SetOfLists;

19 SetOfListsnew := SetOfListsnew ∪ SetOfListsh;

20 if µ′.NumberOfHoles > 0 then
21 forall i ∈ [n] do

\\ Add pop for stack i

22 SetOfListsp := AddPopi(µ
′,M,AHSi, HSi, WR) \ SetOfLists;

23 SetOfListsnew := SetOfListsnew ∪ SetOfListsp;
24 forall µ3 ∈ SetOfListsp do
25 if µ3.last ∈ Sf and µ3.NumberOfHoles = 0 then
26 return False; \\If reached destination state

27 while SetOfListsnew 6= ∅;
28 return True;

2. Push-Pop Closure: For stack operations, consider a push transition on284

some stack (say stack i) of symbol γ, enabled from a state s1, reaching state285

s2. If there is a matching pop transition from a state s3 to s4, which pops the286

same stack symbol γ from the stack i and if we have (s2, s3) ∈ Rc, then we287

can add the tuple (s1, s4) to Rc. The function WellNestedReach (Algorithm 2,288

Appendix B) repeats this process and the transitive closure described above289

until a fix-point is reached. Let us denote the resulting set of tuples by WR.290

Thus, we have291

Lemma 1. (s1, s2) ∈WR iff ∃ a well-nested run in the MPDA from s1 to s2.292

Beyond well-nested reachability. A naive algorithm for K-hole bounded293

reachability for K > 0 is to start from the initial state s0, and do a Breadth294

First Search (BFS), nondeterministically choosing between extending with a295

well-nested segment, creating hole segments (with a pending push) and closing296

hole segments (using pops). We accept when there are no open hole segments297

and reach a final state; this gives an exponential time algorithm. Given the298

exponential dependence on the hole-bound K (Corollary 1), this exponential299

blowup is unavoidable in the worst case, but we can do much better in practice.300

In particular, the naive algorithm makes arbitrary non-deterministic choices301

resulting in a blind exploration of the BFS tree.302

8

In this section, we use the binary well-nested reachability algorithm as an303

efficient subroutine to limit the search in BFS to its reachable part (note that304

this is quite different from DFS as well since we do not just go down one path).305

The crux is that at any point, we create a new hole for stack i, only when (i)306

we know that we cannot reach the final state without creating this hole and (ii)307

we know that we can close all such holes which have been created. Checking (i)308

is easy, since we just use the WR relation for this. Checking (ii) blindly would309

correspond to doing a DFS; however, we precompute this information and simply310

look it up, resulting in a constant time operation after the precomputation.311

Precomputing hole information. Recall that a hole of stack i is a maximal312

sequence of the form (↓i ws)+, where ws is a well-nested sequence and ↓i313

represents a push of stack i . A hole segment of stack i is a prefix of a hole314

of stack i, ending in a ws, while an atomic hole segment of stack i is just the315

segment of the form ↓i ws. A hole-segment of stack i which starts from state s316

in the MPDA and ends in state s′, can be represented by the triple (i, s, s′), that317

we call a hole triple. We compute the set HSi of all hole triples (i, s, s′) such that318

starting at s, there is a hole segment of stack i which ends at state s′, as detailed319

in lines (5-9) of Algorithm 1. In doing so, we also compute the set AHSi of all320

atomic hole segments of stack i and store them as tuples of the form (i, sp, α, sq)321

such that sp and sq are the MPDA states respectively at the left and right end322

points of an atomic hole segment of stack i, and α is the symbol pushed on stack323

i (sp
↓i(α)ws−−−−−→ sq).324

A guided BFS exploration. We start with a list µ0 = [s0] consisting of325

the initial state and construct a BFS exploration tree whose nodes are lists of326

bounded length. A list is a sequence of states and hole triples representing a327

K-hole bounded run in a concise form. If Hi represents a hole triple for stack i,328

then a list is a sequence of the form [s,Hi, Hj , Hk, Hi, . . . ,H`, s
′]. The simplest329

kind of list is a single state s. For example, a list with 3 holes of stacks i, j, k is330

µ = [s0,(i, s, s′),(j, r, r′),(k, t, t′),t′′]. The hole triples (in red) denote open holes331

in the list. The maximum number of open holes in a list is bounded, making the332

length of the list also bounded. Let last(µ) represent the last element of the list333

µ. This is always a state. For a node v storing list µ in the BFS tree, if v1, . . . vk334

are its children, then the corresponding lists µ1, . . . µk are obtained by extending335

the list µ by one of the following operations:336

1. Extend µ with a hole. Assume there is a hole of some stack i, which starts337

at last(µ) = s, and ends at s′. If the list at the parent node v is µ = [. . . , s],338

then for all (i, s, s′) ∈ HSi, we obtain the list trunc(µ) · append[(i, s, s′), s′]339

at the child node (i.e., we remove the last element s of µ, then append to340

this list the hole triple (i, s, s′), followed by s′). Algorithm 3 in Appendix341

describes this operation in more detail.342

2. Extend µ with a pop. Suppose there is a transition t = (sk, ↑i(α), a, s′k)343

from last(µ) = sk, where µ is of the form [s0, . . . , (h, u, v), (i, s, s′), (j, t, t′) . . . , sk],344

such that there is no hole triple of stack i after (i, s, s′), we extend the run by345

matching this pop (with its push). However, to obtain the last pending push346

9

of stack i corresponding to this hole, just HSi information is not enough347

since we also need to match the stack content. Instead, we check if we can348

split the hole (i, s, s′) into (1) a hole triple (i, s, sa) ∈ HSi, and (2) a tuple349

(i, sa, α, s
′) ∈ AHSi. If both (1) and (2) are possible, then the pop transition t350

corresponds to the last pending push of the hole (i, s, s′). t indeed matches the351

pending push recorded in the atomic hole (i, sa, α, s
′) in µ, enabling the firing352

of transition t from the state sk, reaching s′k. In this case, we add the child node353

with the list µ′ obtained from µ as follows. We replace (i) sk with s′k, and (ii)354

(i, s, s′) with (i, s, sa), respectively signifying firing of the transition t and the355

“shrinking” of the hole, by shifting the end point of the hole segment to the left.356

When we obtain the hole triple (i, s, s) (the start and end points of the hole357

segment coincide), we may have uncovered the last pending push and thereby358

“closed” the hole segment completely. At this point, we may choose to remove359

(i, s, s) from the list, obtaining [s0, . . . , (h, u, v), (j, t, t′) . . . , s′k]. For every360

such µ′ = [s0, . . . , (h, u, v), (i, s, sa), (j, t, t
′), . . . , s′k] and all (s′k, sm) ∈ WS361

we also extend µ′ to µ′′ = [s0, . . . , (h, u, v), (i, s, sa), (j, t, t′), . . . , sm]. Notice362

that the size of the list in the child node obtained on a pop, is either the363

same as the list in the parent, or is smaller. The details are in Algorithm 4.364

The number of lists is bounded since the number of states and the length of365

the lists are bounded. The BFS exploration tree will thus terminate. Combining366

the above steps gives us Algorithm 1, whose correctness gives us:367

Theorem 1. Given a MPDA and a positive integer K, Algorithm 1 always368

terminates and answers “false” iff there exists a K-hole bounded accepting run369

of the MPDA.370

Complexity of the Algorithm. The maximum number of states of the system371

is |S|. The time complexity of transitive closure is O(|S|3), using a Floyd-Warshall372

implementation. The time complexity of Algorithm 2, which uses the transitive373

closure, is O(|S|5)+O(|S|2× (|∆|× |S|)). To compute AHS for n stacks the time374

complexity is O(n×|∆|× |S|2) and to compute HS for n stacks the complexity is375

O(n×|S|2). For multistack systems, each list keeps track of (i) the number of hole376

segments(≤ K), and (ii) information pertaining to holes (start, end points of holes,377

and which stack the hole corresponds to). In the worst case, this will be (2K + 2)378

possible states in a list, as we are keeping the states at the start and end points379

of all the hole segments and a stack per hole. So, there are ≤ |S|2K+3 × nK+1
380

lists. In the worst case, when there is no K-hole bounded run, we may end up381

generating all possible lists for a given bound K on the hole segments. The time382

complexity is thus bounded above by O(|S|2K+3 × nK+1 + |S|5 + |S|3 × |∆|).383

Beyond Reachability. We can solve the usual safety questions in the (bounded-384

hole) underapproximate setting, by checking for underapproximate reachability385

on the product of the given system with the complement of the safe set. Given386

the way Algorithm 1 is designed, the fix-point algorithm allows us to go beyond387

reachability. In particular, we can solve several (increasingly difficult) variants of388

the repeated reachability problem, without much modification.389

Consider the question : For a given state s and MPDA, does there exist a390

run ρ starting from s0 which visits s infinitely often? This is decidable if we can391

10

decompose ρ into a finite prefix ρ1 and an infinite suffix ρ2 s.t. (1)Both ρ1, ρ2392

are well-nested, or (2) ρ1 is K-hole bounded complete (all stacks empty), and ρ2393

is well-nested, or (3) ρ1 is K-hole bounded, and ρ2 = (ρ3)ω, where ρ3 is K-hole394

bounded. It is easy to see that (1) is solved by two calls to WellNestedReach and395

choosing non-empty runs. (2) is solved by a call to Algorithm 1, modified so that396

we reach s, and then calling WellNestedReach. Lastly, to solve (3), first modify397

Algorithm 1 to check reachability to s with possibly non-empty stacks. Then run398

the modified algorithm twice : first start from s0 and reach s; second start from399

s and reach s again.400

4 Generating a Witness401

We next focus on the question of generating a witness for an accepting run402

when our algorithm guarantees non-emptiness. This question is important to403

address from the point of view of applicability: if our goal is to see if bad states404

are reachable, i.e., non-emptiness corresponds to presence of a bug, the witness405

run gives the trace of how the bug came about and hence points to what can406

be done to fix it (e.g., designing a controller). We remark that this question is407

difficult in general. While there are naive algorithms which can explore for the408

witness (thus also solving reachability), these do not use fix-point techniques and409

hence are not efficient. On the other hand, since we use fix-point computations410

to speed up our reachability algorithm, finding a witness, i.e., an explicit run411

witnessing reachability, becomes non-trivial. Generation of a witness in the case of412

well-nested runs is simpler than the case when the run has holes, and requires us413

to “unroll” pairs (s0, sf) ∈ WR recursively and generate the sequence of transitions414

responsible for (s0, sf), as detailed in Algorithm 5.415

Getting Witnesses from Holes. Now we move on to the more complicated416

case of behaviours having holes. Recall that in BFS exploration we start from417

the states reachable from s0 by well-nested sequences, and explore subsequent418

states obtained either from (i) a hole creation, or (ii) a pop operation on a stack.419

Proceeding in this manner, if we reach a final configuration (say sf), with all420

holes closed (which implies empty stacks), then we declare non-emptiness. To421

generate a witness, we start from the final state sf reachable in the run (a leaf422

node in the BFS exploration tree) and backtrack on the BFS exploration tree423

till we reach the initial state s0. This results in generating a witness run in the424

reverse, from the right to the left.425

• Assume that the current node of the BFS tree was obtained using a pop426

operation. There are two possibilities to consider here (see below) depending on427

whether this pop operation closed or shrunk some hole. Recall that each hole428

has a left end point and a right end point and is of a specific stack i, depending429

on the pending pushes ↓i it has. So, if the MPDA has k stacks, then a list in the430

exploration tree can have k kinds of holes. The witness algorithm uses k stacks431

called witness stacks to correctly implement the backtracking procedure, to deal432

with k kinds of holes. Witness stacks should not be confused with the stacks of433

the MPDA.434

11

• Assume that the current pop operation is closing a hole of kind435

i as in Figure 2. This hole consists of the atomic holes , and . The436

atomic hole consists of the push and the well-nested sequence (same437

for the other two atomic holes). Searching among possible push transitions, we438

identify the matching push associated with the current pop, resulting in closing439

the hole. On backtracking, this leads to a parent node with the atomic hole440

having as left end point, the push , and the right end point as the target of441

the ws . We push onto the witness stack i, a barrier (a delimiter symbol #)442

followed by the matching push transition and then the ws, . The barrier443

segregates the contents of the witness stack when we have two pop transitions of444

the same stack in the reverse run, closing/shrinking two different holes.445

Fig. 2. Backtracking to spit out
the hole in reverse. The
transitions of the atomic hole
are first written in the reverse
order, followed by those of in
reverse, and then of in reverse.

• Assume that the current pop operation is446

shrinking a hole of kind i. The list at the447

present node has this hole, and its parent will448

have a larger hole (see Figure 2, where the449

parent node of has). As in the450

case above, we first identify the matching push451

transition, and check if it agrees with the push452

in the last atomic hole segment in the parent.453

If so, we populate the witness stack i with the454

rightmost atomic hole segment of the parent455

node (see Figure 2, is populated in the456

stack). Each time we find a pop on backtracking457

the exploration tree, we find the rightmost458

atomic hole segment of the parent node, and459

keep pushing it on the stack, until we reach460

the node which is obtained as a result of a hole461

creation. Now we have completely recovered the462

entire hole information by backtracking, and463

fill the witness stack with the reversed atomic464

hole segments which constituted this hole. Notice that when we finish processing465

a hole of kind i, then the witness stack i has the hole reversed inside it, followed466

by a barrier. The next hole of the same kind i will be treated in the same manner.467

• If the current node of the BFS tree is obtained by creating a hole of kind i468

in the fix-point algorithm, then we pop the contents of witness stack i till we469

reach a barrier. This spits out the atomic hole segments of the hole from the470

right to the left, giving us a sequence of push transitions, and the respective ws471

in between. The transitions constituting the ws are retrieved using Algorithm 5472

and added. Notice that popping the witness stack i till a barrier spits out the473

sequence of transitions in the correct reverse order while backtracking.474

5 Adding Time to Multi-pushdown systems475

In this section, we briefly describe how the algorithms described in section 3476

can be extended to work in the timed setting. Due to lack of space, we focus477

12

on some of the significant challenges and advances, leaving the formal details478

and algorithms to the supplement [11]. A TMPDA extends a MPDA with clock479

variables. Transitions check constraints which are conjunctions/disjunctions of480

constraints (called closed guards in the literature) of the form x ≤ c or x ≥ c for481

c ∈ N and x any clock. Symbols pushed on stacks “age” with time elapse. A pop482

is successful only when the age of the symbol lies within a certain interval. The483

acceptance condition is as in the case of MPDA.484

The first main challenge in adapting the algorithms in section 3 to the timed485

setting was to take care of all possible time elapses along with the operations486

defined in Algorithm 1. The usage of closed guards in TMPDA means that it487

suffices to explore all runs with integral time elapses (for a proof see e.g., Lemma488

4.1 in [16]). Thus configurations are pairs of states with valuations that are vectors489

of non-negative integers, each of which is bounded by the maximal constant in490

the system. Now, to check reachability we need to extend all the precomputations491

(transitive closure, well-nested reachability, as well as atomic and non-atomic hole492

segments) with the time elapse information. To do this, we use a weighted version493

of the Floyd-Warshall algorithm by storing time elapses during precomputations.494

This allows us to use this precomputed timed well-nested reachability information495

while performing the BFS tree exploration, thus ensuring that any explored state496

is indeed reachable by a timed run. In doing so, the most challenging part is497

extending the BFS tree wrt a pop. Here, we not only have to find a split of a498

hole into an atomic hole-segment and a hole-segment as in Algorithm 1, but also499

need to keep track of possible partitions of time.500

Timed Witness: As in the untimed case, we generate a witness certifying non-501

emptiness of TMPDA. But, producing a witness for the fix-point computation502

as discussed earlier requires unrolling. The fix-point computation generates a503

pre-computed set WRT of tuples ((s, ν), t, (s′, ν′)), where s, s′ ∈ S, t is time elapsed504

in the well-nested sequence and ν, ν′ ∈ N|X | are integral valuations. This set505

of tuples does not have information about the intermediate transitions and506

time-elapses. To handle this, using the pre-computed information, we define a507

lexicographic progress measure which ensures termination of this search.508

While the details are in [11] (Algorithm 14), the main idea is as follows:509

the first progress measure is to check if there a time-elapse t transition possible510

between (s, ν) and (s′, ν′) and if so, we print this out. If not, ν′ 6= ν + t, and511

some set of clocks have been reset in the transition(s) from (s, ν) to (s′, ν′). The512

second progress measure looks at the sequence of transitions from (s, ν) to (s′, ν′),513

consisting of reset transitions (at most the number of clocks) that result in ν′514

from ν. If neither the first nor the second progress measure apply, then ν = ν′,515

and we are left to explore the last progress measure, by exploring at most |S|516

number of transitions from (s, ν) to (s′, ν′). The lexicographic progress measure517

seamlessly extends the witness generation to the timed setting.518

13

6 Implementation and Experiments519

We implemented a tool BHIM (Bounded Holes In MPDA) written in C++ based520

on Algorithm 1, which takes an MPDA and a constant K as input and returns521

(True) iff there exists a K-hole bounded run from the start state to an accepting522

state of the MPDA. In case there is such an accepting run, BHIM generates one523

such, with minimal number of holes. For a given hole bound K, BHIM first tries524

to produce a witness with 0 holes, and iteratively tries to obtain a witness by525

increasing the bound on holes till K. In most of the cases, BHIM found the526

witness before reaching the bound K. Whenever BHIM’s witness had K holes, it527

is guaranteed that there are no witnesses with a smaller number of holes.528

To evaluate the performance of BHIM, we looked at some available benchmarks529

and modeled them as MPDA. We also added timing constraints to some examples530

such that they can be modeled as TMPDA. Our tests were run on a GNU/Linux531

system with Intel R© CoreTM i7–4770K CPU @ 3.50GHz, and 16GB of RAM. We532

considered overall 7 benchmarks, of which we sketch 3 in detail here. The details533

of these as well as the remaining ones are in [11].534

• Bluetooth Driver [18]. The Bluetooth device driver example [18], has two535

threads and a shared memory. We model this driver using a 2-stack pushdown536

system, where a state represents the current valuation of the global variables and537

stacks are used to maintain the call-return between different functions and to538

keep the count of processes currently using the driver. There is also a scheduler539

which can preempt any thread executing a non-atomic instruction. A known error540

as pointed out in [18] is a race condition between two threads where one thread541

tries to write to a global variable and the other thread tries to read from it. BHIM542

found this error, with a well-nested witness. A timed extension of this example543

was also considered, where, a witness was obtained again with hole bound 0.544

• Bluetooth Driver v2 [10,8]. A modified version of Bluetooth driver is545

considered [10,8], where a counter is maintained to count the number of threads546

actively using the driver. A two stack MPDA models this, with one stack simulating547

the counter and another one scheduling the threads. Two known errors reported548

are (i) counter underflow where a counter goes negative, leading to some unwanted549

behavior of the driver, (2) interrupted I/O, where the stopping thread kills the550

driver while the other thread is busy with I/O. The tools SPADE and MAGIC551

[10,8] found one of these two errors, while BHIM found both errors, the first using552

a well nested witness, and the second with a 2-hole bounded witness.553

•A Multi-threaded Producer Consumer Problem. The Producer consumer554

problem (see e.g., [25]) is a classic example of concurrency and synchronization.555

An interesting scenario is when there are multiple producers and consumers.556

Assume that two ingredients called ‘A’ and ‘B’ are produced in a production557

line in batches, where a batch can produce arbitrarily many items, but it is558

fixed for a day. Further, assume that (1) two units of ‘A’ and one unit of ‘B’559

make an item called ‘C’; (2) the production line starts by producing a batch560

of A’s and then in the rest of the day, it keeps producing B’s in batches, one561

after the other. During the day, ‘C’s are churned out using ‘A’ and ‘B’ in the562

proportion mentioned above and, if we run out of ‘A’s, we obtain an error; there563

14

is no problem if ‘B’ is exhausted, since a fresh batch producing ‘B’ is commenced.564

This idea can be imagined as a real life scenario where item ‘A’ represents an565

item which is very expensive to produce but can be produced in large amount566

but the item ‘B’ can be produced frequently, but it has to be consumed very567

soon, if it is not consumed then it becomes useless. For m,n, k ∈ N, consider568

words of the form am(bk(c2d)k)n where, a represents the production of one unit569

of ‘A’, b represents the production of one unit of ‘B’, c represents consumption570

of one unit of ‘A’ and d represents consumption of one unit of ‘B’. ‘m’ represents571

the production capacity of ‘A’ for the day and ‘k’ represents production capacity572

of ‘B’(per batch) for the day, ‘n’ represents the number batches of ‘B’ produced573

in a day. Unless m ≥ 2nk, we will obtain an error. This is easily modeled using a574

2 stack visibly multi pushdown automaton where a, b are push symbols of stack 1,575

2 respectively and c, d are pop symbols of stack 1, 2 respectively. Let Lm,k,n be576

the set of words of the above form s.t. 2nk < m. It can be seen that Lm,k,n does577

not have any well-nested word in it. The number of context switches(also, scope578

bound) in words of Lm,k,n depends on the parameters k and n. However, Lm,k,n579

is 2 hole-bounded : at any position of the word, the open holes come from the580

unmatched sequences of a and b seen so far. BHIM checked for the non-emptiness581

of Lm,k,n with a witness of hole bound 2.582

• Critical time constraints [26]. This is one of the timed examples, where583

we consider the language Lcrit = {aybzcydz | y, z ≥ 1} with time constraints584

between occurrences of symbols. The first c must appear after 1 time-unit of the585

last a, the first d must appear within 3 time-units of the last b, and the last b586

must appear within 2 time units from the start, and the last d must appear at 4587

time units. Lcrit is accepted by a TMPDA with two timed stacks. Lcrit has no588

well-nested word, is 4-context bounded, but only 2 hole-bounded.589

• A Linux Kernel bug dm target.c [27]. This example is about a double590

free bug in the file drivers/md/dm-target.c in Linux Kernel 2.5.71, which591

was introduced to fix a memory leak, but it ended up double freeing the object.592

BHIM found this bug with a witness of hole bound 3.593

• Concurrent Insertions in Binary Search Trees. Concurrent insertions in594

binary search trees is a very important problem in database management systems.595

[28] proposes an algorithm to solve this problem for concurrent implementations.596

However, if the locks are not implemented properly, then it is possible for a597

thread to overwrite others. We modified the algorithm [28] to capture this bug,598

and modeled it as MPDA. BHIM found the bug with a witness of hole-bound 2.599

•Maze Example. Finally we consider a robot navigating a maze, picking items;600

an extended (from single to multiple stack) version of the example from [17]. In601

the untimed setting, a witness for non-emptiness was obtained with hole-bound602

0, while in the extension with time, the witness had a hole-bound 2, since the603

satisfaction of time constraints required a longer witness.604

Results and Discussion. The performance of BHIM is presented in Table 1 for605

untimed examples and in Table 2 for timed examples. Apart from the results606

in the tables, to check the robustness of BHIM wrt parameters like the number607

of locations, transitions, stacks, holes and clocks (for TMPDA), we looked at608

15

Name Locations Transitions Stacks Holes Time Empty (mili sec) Time Witness (mili sec) Memory(KB)

Bluetooth 57 96 2 0 157.9 7.1 7424

Bluetooth v2(err1) 58 99 2 0 27.4 7.1 5096

Bluetooth v2(err2) 58 99 2 2 97.4 24.1 6478

MultiProdCons 11 18 2 2 11.1 0.1 1796

dm-target 13 27 2 3 42.0 5.8 4476

Binary Search Tree 29 78 2 2 60.8 5.1 5143

untimed-Lcrit 6 10 2 2 14.9 0.7 4692

untimed-Maze 9 12 2 0 12.0 0.2 3858

Lbh (from Sec. 2.1) 7 13 2 2 22.2 0.6 4404

Table 1. Experimental results: Time Empty and Time Witness column represents no.
of milliseconds needed for emptiness checking and to generate witness respectively.

Name Locations Transitions Stacks Clocks cmax Aged(Y/N) Holes Time Empty(mili sec) Time Witness (mili sec) Memory(KB)

Bluetooth 57 96 2 0 2 Y 0 169.9 101.3 5248

Lcrit 6 10 2 2 8 Y 2 9965.2 3.7 203396

Maze 9 12 2 2 5 Y 2 956.8 9.7 14554

Table 2. Experimental results of timed examples. The column cmax is defined as the
maximum constant in the automaton, and Aged denotes if the stack is timed or not

examples with an empty language, by making accepting states non-accepting in609

the examples considered so far. This forces BHIM to explore all possible paths in610

the BFS tree, generating the lists at all nodes. The scalability of BHIM wrt all611

these parameters are in [11].612

BHIM Vs. State of the art. What makes BHIM stand apart wrt the existing613

state of the art tools is that (i) none of the existing tools handle under approximations614

captured by bounded holes, (ii) none of the existing tools work with multiple615

stacks in the timed setting (even closed guards!). The state of the art research in616

underapproximations wrt untimed multistack pushdown systems has produced617

some amazing tools like GetaFix which handles multi-threaded programs with618

bounded context switches. While we have adapted some of the examples from619

GetaFix, the latest available version of GetaFix has some issues in handling620

those examples3. Likewise, SPADE, MAGIC and the counter implementation621

[27] are currently not maintained. This has come in the way of a performance622

comparison between BHIM and these tools. Indeed, most examples handled by623

BHIM correspond to non-context bounded, or non scope bounded, or timed624

languages which are beyond Getafix. For instance, the 2-hole bounded witness625

found by BHIM for the language L20,10(m = 20, p = 10) for the multi producer626

consumer case cannot be found by GetaFix/MAGIC/SPADE with less than 41627

context switches. In the timed setting, the Maze example (TMPDA with 2 clocks,628

2 timed stacks) has a 2 hole-bounded witness where the robot visits certain629

locations an equal number of times. The tool [17] cannot handle this example630

since it handles only one stack. Lastly, [17] cannot solve binary reachability with631

an empty stack unlike BHIM.632

BHIM v2. The next version of BHIM will go symbolic, inspired from GetaFix. The633

current avatar of BHIM showcases the efficiency of fix-point techniques extended634

3 we did get in touch with the authors, who confirmed this

16

to larger bounded underapproximations; indeed going symbolic will make BHIM635

much more robust and scalable.636

Acknowledgements. We would like to thank Gennaro Parlato for the discussions637

we had on Getafix and for providing us benchmarks.638

References639

1. Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust640

class of context-sensitive languages. In Logic in Computer Science, 2007. LICS641

2007. 22nd Annual IEEE Symposium on, pages 161–170. IEEE, 2007.642

2. Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. The language643

theory of bounded context-switching. In Latin American Symposium on Theoretical644

Informatics, pages 96–107. Springer, 2010.645

3. Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. Scope-bounded646

pushdown languages. International Journal of Foundations of Computer Science,647

27(02):215–233, 2016.648

4. Aiswarya Cyriac, Paul Gastin, and K Narayan Kumar. MSO decidability of multi-649

pushdown systems via split-width. In International Conference on Concurrency650

Theory, pages 547–561. Springer, Berlin, Heidelberg, 2012.651

5. Salvatore La Torre and Margherita Napoli. Reachability of multistack pushdown652

systems with scope-bounded matching relations. In International Conference on653

Concurrency Theory, page 203–218. Springer, 2011.654

6. Salvatore La Torre and Parlato Gennaro. Scope-bounded multistack pushdown655

systems: Fixed-point, sequentialization, and tree-width. 2012.656

7. Salvatore La Torre, Madhusudan Parthasarathy, and Gennaro Parlato. Analyzing657

recursive programs using a fixed-point calculus. ACM Sigplan Notices, 44(6):211–658

222, 2009.659

8. Gaël Patin, Mihaela Sighireanu, and Tayssir Touili. Spade: Verification of660

multithreaded dynamic and recursive programs. In International Conference on661

Computer Aided Verification, pages 254–257. Springer, 2007.662

9. Shaz Qadeer. The case for context-bounded verification of concurrent programs. In663

Model Checking Software, 15th International SPIN Workshop, Los Angeles, CA,664

USA, August 10-12, 2008, Proceedings, pages 3–6, 2008.665

10. Sagar Chaki, Edmund Clarke, Nicholas Kidd, Thomas Reps, and Tayssir Touili.666

Verifying concurrent message-passing C programs with recursive calls. In667

International Conference on Tools and Algorithms for the Construction and Analysis668

of Systems, page 334–349. Springer, 2006.669

11. Akshay S, Gastin Paul, S Krishna, and Roychowdhury Sparsa. Supplementary670

material: Revisiting under-approximate reachability in MPDA. Available at https:671

//cse.iitb.ac.in/~sparsa/bhim/, 2019.672

12. Mohamed Faouzi Atig. Model-checking of ordered multi-pushdown automata. arXiv673

preprint arXiv:1209.1916, 2012.674

13. Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. On the automatic675

verification of systems with continuous variables and unbounded discrete data676

structures. In International Hybrid Systems Workshop, pages 64–85. Springer, 1994.677

14. Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. Dense-timed678

pushdown automata. In Proceedings of the 27th Annual IEEE Symposium on Logic679

in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, page680

35–44, 2012.681

17

https://cse.iitb.ac.in/~sparsa/bhim/
https://cse.iitb.ac.in/~sparsa/bhim/
https://cse.iitb.ac.in/~sparsa/bhim/

15. Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. The minimal682

cost reachability problem in priced timed pushdown systems. In Language and683

Automata Theory and Applications - 6th International Conference, LATA 2012, A684

Coruña, Spain, March 5-9, 2012. Proceedings, pages 58–69, 2012.685

16. S. Akshay, Paul Gastin, and Shankara Narayanan Krishna. Analyzing Timed686

Systems Using Tree Automata. Logical Methods in Computer Science, Volume 14,687

Issue 2, May 2018.688

17. S. Akshay, Paul Gastin, Shankara Narayanan Krishna, and Ilias Sarkar. Towards689

an efficient tree automata based technique for timed systems. In 28th International690

Conference on Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin,691

Germany, pages 39:1–39:15, 2017.692

18. Shaz Qadeer and Dinghao Wu. Kiss: keep it simple and sequential. Acm sigplan693

notices, 39(6):14–24, 2004.694

19. P Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In ACM695

SIGPLAN Notices, volume 46, pages 283–294. ACM, 2011.696

20. S. Akshay, Paul Gastin, Vincent Jugé, and Shankara Narayanan Krishna. Timed697

systems through the lens of logic. In 34th Annual ACM/IEEE Symposium on Logic698

in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages699

1–13, 2019.700

21. Aiswarya Cyriac. Verification of communicating recursive programs via split-width.701

(Vérification de programmes récursifs et communicants via split-width). PhD thesis,702

École normale supérieure de Cachan, France, 2014.703

22. Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown languages. In704

Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,705

pages 202–211. ACM, 2004.706

23. Zhe Dang, Oscar H Ibarra, Tevfik Bultan, Richard A Kemmerer, and Jianwen Su.707

Binary reachability analysis of discrete pushdown timed automata. In International708

Conference on Computer Aided Verification, page 69–84. Springer, 2000.709

24. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.710

Introduction to algorithms. MIT press, 2009.711

25. Abraham Silberschatz, Greg Gagne, and Peter B Galvin. Operating system concepts.712

Wiley, 2018.713

26. Devendra Bhave, Vrunda Dave, Shankara Narayanan Krishna, Ramchandra714

Phawade, and Ashutosh Trivedi. A perfect class of context-sensitive timed languages.715

In International Conference on Developments in Language Theory, pages 38–50.716

Springer, Berlin, Heidelberg, 2016.717

27. Matthew Hague and Anthony Widjaja Lin. Synchronisation- and reversal-bounded718

analysis of multithreaded programs with counters. In Computer Aided Verification719

- 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012720

Proceedings, page 260–276, 2012.721

28. HT Kung and Philip L Lehman. Concurrent manipulation of binary search trees.722

ACM Transactions on Database Systems (TODS), 5(3):354–382, 1980.723

18

Appendix

A Details for Section 2724

A.1 Proposition 1725

We use the notion of Tree Terms (TTs) [17] to compute the tree-width of a given726

graph. Where a minimal finite set of colors are used to color the vertices and then727

partition the graph in two partitions such that the cut vertices are colored. The728

aim of this approach is to decompose a graph to “atomic” tree terms. We cannot729

use a color more than once in a partition of graph, unless we forget it. This can730

be modeled as a game between two player, Adam and Eve. Where, Eve’s goal is731

to reach atomic terms with minimum finite number of colors, and Adam’s goal is732

to make Eve’s life difficult by choosing a more demanding partition.733

To prove that the a model has bounded tree-width we will try to capture the734

runs of the model in terms of graphs (Multiply nested words [6]) and play the735

game mentioned above.736

Tree Width of Hole Bounded Multistack Pushdown Automaton737

We will capture the behaviour (any run ρ) of K−hole bounded multistack738

pushdown systems as a graph G where, every node represents a transition t ∈ ∆739

and the edge between the nodes can be of the following types.740

– Linear order 4 between the transitions gives the order in which the transitions741

are fired in the system. We will use 4+ to represent transitive closure of 4.742

– The other type of edges represent the push pop relation between two743

transitions. Which means, if a transition t1 have a push operation in the744

stack i and transition t2 has the corresponding pop of the stack i, matching745

the push on stack i of transition t1, then we have an edge t1 ys t2 between746

them, which will represent the push-pop relation.747

To prove that the tree width of the class of graph G is bounded, we will use748

coloring game [17] and show that we need bounded number of colors to split any749

graph g ∈ G to atomic tree terms.750

Eve will start from the right most node of the graph by coloring it. The last751

node of the graph can be any one of the following,752

– End point of a well-nested sequence753

– Pop transition tpp of stack i , such that, the push tps is coming from nearest754

hole of stack i.755

1. If the endpoint colored is the end point of a well-nested sequence then Eve756

can remove the well-nested sequence by adding another color to the first757

point of the well-nested sequence.758

If we look at the well-nested part, using just one more color we can split it759

to atomic tree terms [17].760

But the other part still remains a graph of class G so Adam will choose this761

partition for Eve to continue the coloring game.762

19

2. If the last point of the graph G is a pop point tpp as discussed earlier, then763

the corresponding push tps can come from a open hole or a closed hole.764

– If it is coming from a closed hole then, Eve will add color to the765

corresponding push tps along with the transition tq such that, tps 4+ tq766

and tps− tq is a well-nested sequence, which forms a atomic hole segment767

(↑ ws) where, ↑ represents the push pop edge tps ys tpp and ws represents768

the well-nested sequence tps − tq. This operation requires 2 colors. Please769

note that, the right end of the hole which got colored after removal of770

tps− tq is another push of the hole, because hole are defined as a sequence771

(↑ ws)+.772

– If the push is coming from open hole then the push transition tps is already773

colored from previous operation as discussed above, hence Eve will add774

another color tq′ to mark the next well-nested sequence tps − tq′(ws′) in775

the right of tps. Now, Eve can remove the stack edge tpp y tps along776

with the well-nested sequence ws′. This operation widens the hole.777

In both the above operations, the graph has two components one with a stack778

edge tpp y tps and another one with a well-nested sequence. Which require779

at most 1 color extra to split into atomic tree terms. On the remaining part780

Eve will continue playing the game from right most point.781

Here, we claim that at any point of time of the coloring game, there will be782

2K + 2 active colors for K ≥ 1 and K ∈ N. Every step of the game splits the783

graph in two part, and one part always can be split into atomic tree terms with784

at most 3 colors. The remaining part will require at most 2 colors for every open785

hole in the left of the right most point of the graph. As the number of open hole786

is bounded by K, so we can not have more than K open holes in the left of any787

point. So, 2K colors to mark the holes. So, total number of colors needed to788

break any such graph to atomic tree terms is 2K + 4.789

A.2 Proposition 2790

We describe the missing details in proposition 2.791

1. Lbh cannot be accepted by any K-bounded phase MPDA.792

Recall that, Lbh = {anbn(aqicqi+1bq
′
jdq

′
j+1)n|n, qi, q′j ∈ N ∀i, j ∈ [n]}, and a, b793

represents push in stack 1,2 respectively and c, d represents the corresponding794

pops from stack 1,2. For all m, consider the word w1 = ambm(alcl+1bl
′
dl

′+1)m.795

Here, clearly the number of phases is K = 2m. Now if w1 is accepted by some796

phase bounded MPDA M then it must have 2m as the bound on the phases797

which will not be sufficient to accept w2(am+1bm+1(alcl+1bl
′
dl

′+1)m+1) ∈798

Lbh.799

2. L′ = {(ab)ncndn | n ∈ N} cannot be accepted by any K-hole bounded MPDA.800

For any m ∈ N assume a word w1 = (ab)mcmdm ∈ L′, where a, b represents801

push in stack 1,2 respectively and c, d represents the corresponding pops802

from stack 1,2. Clearly, this can be accepted by a bounded hole multistack803

pushdown automata M with bound = 2m. Now if L′ is accepted by M then804

20

it must also accept, w2 = (ab)m+1cm+1dm+1. However, the number of holes805

required to accept w2 is 2(m + 1) > 2m. This contradicts the assumption806

that M accepts the language.807

B Details for Section 3808

In this section, we provide all the subroutines mentioned in Section 3 and used809

in Algorithm 1 for MPDA.810

We start by presenting Algorithm 2 which computes the well-nested reachability811

relation, i.e., it computes the set WR of all pairs of states (s, s′) such that there812

is a well-nested sequence from s to s′. The proof of correctness of this algorithm

Algorithm 2: Well Nested Reachability

1 Function WellNestedReach(M = (S,∆, s0,Sf , n,Σ, Γ)):
Result: WR:= {(s, s′)|s′ is reachable from s via a well-nested sequence }

2 Rc := {(s, s)|s ∈ S};
3 forall (s1, op, a, s2) ∈ ∆ with op = nop do
4 Rc := Rc ∪ {(s1, s2)}; \\Transitions with nop operation

5 Rc := TransitiveClosure(Rc); \\Using Floyd-Warshall Algorithm

6 while True do
7 WR:= Rc;
8 forall (s, ↓i (α), a, s1) ∈ ∆ do
9 forall (s1, s2) ∈WR do

10 forall (s2, ↑i (α), a, s′) ∈ ∆ do
11 Rc := Rc ∪ {(s, s′)}; \\Wrap well-nested sequence with

matching push-pop

12 Rc:= TransitiveClosure(Rc);
13 if Rc\WR = ∅ then
14 break; \\Break when no new well-nested sequence added

15 return WR ;

813

(and thus Lemma 1) is easy to see. First, line 5 the set Rc contains all pairs (s,′)814

such that s′ is reachable from s in the MPDA without using the stack. Then815

for every push transition from a state s we check in lines 8-11 whether there816

is an (already computed) well-nested sequence that can reach a state s′ with817

a corresponding pop transition and if so we add (s, s′). We take the transitive818

closure and repeat this process, hence guaranteeing that at fixed point we will819

have all well-nested pairs, i.e., WR.820

Details of Algorithm 3 For a given list µ Algorithm 3 tries to extend the list µ821

by adding a hole of a stack i. This is achieved by checking the last state slast the822

list µ and finding all possible hole in HSi that start with slast and appending823

the hole followed by a suitable well-nested sequence to µ.824

21

Algorithm 3: AddHole

1 Function AddHolei(µ, HSi):
Result: Set, a set of lists.

2 Set := ∅;
3 forall (i, s, s′) ∈ HSi with s = last(µ) do
4 µ′ := copy(µ); \\Create a copy of the list µ
5 trunc(µ′); \\trunc(µ) is defined as remove(last(µ)))
6 µ′.append[(i, s, s′), s′]; \\Append to the list µ′

7 µ′.NumberOfHoles := µ.NumberOfHoles + 1;
8 Set := Set ∪ {µ′};
9 return Set;

Algorithm 4: Extend with a pop

1 Function AddPopi(µ,M = (S,∆, s0,Sf , n,Σ, Γ), AHSi, HSi,WR):
Result: Set, a set of lists

2 Set := ∅;
3 (i, s1, s3) := lastHolei(µ); \\Get the last open hole of stack i
4 forall (i, s1, s2) ∈ HSi, (s2, α, s3) ∈ AHSi, (s, ↑i(α), s′) ∈ ∆, s = last(µ)

and (s′, s′′) ∈ WR do
5 µ′ := copy(µ);
6 trunc(µ′);
7 µ′.append(s′′);
8 if (s1 = s2) then
9 µ′′ := copy(µ);

10 trunc(µ′′);
11 µ′′.append(s′′);
12 µ′′.remove((i, s1, s3)); \\Remove the hole (i, s1, s2) from the

list µ′′

13 µ′′.NumberOfHoles := µ.NumberOfHoles-1;
14 Set := Set ∪ {µ′′};
15 µ′.replace((i, s1, s3), by (i, s1, s2)); \\Replace bigger hole

(i, s1, s3) by new smaller hole (i, s1, s2)
16 Set := Set ∪ {µ′};
17 return Set;

Details of Algorithm 4 For a given list µ this algorithm tries to extend µ with a825

pop operation. The algorithm starts with extracting the last hole(Hi) of stack826

i. Due to the well-nested property, the pop (which is not part of a well-nested827

sequence) must be matched with the first pending push in the last hole of stack828

i in µ. Then the algorithm checks for all atomic hole-segments AHSi and hole-829

segments HSi s of the stack i, such that, the hole Hi can be partitioned in HSi830

and AHSi. Then the push in AHSi is matched with the matched pop operation831

and the hole is now shrunk into HSi. So, the algorithm replaces Hi with HSi. If832

the Hi is same as some AHSi then, the hole can be closed and hence it removes833

the hole from the list. In this case it also reduces the count of the number of834

22

holes in the list. Note that without the pre-computation of AHSi and HSi this835

part of the algorithm is fairly difficult. Using the pre-computation allow us to use836

simple table look ups when the states are known, this takes only constant time.837

C Details for Section 4838

The algorithm for witness generation, as discussed in the main part of the paper,839

does a backtracking on the BFS tree. When we encounter a node in the BFS840

tree extending the list with a pop, creating a hole, we use the last state in841

the list, the transition information from the node, and the witness stack for842

backtracking. During the backtracking we also need to know the sequence of843

transitions responsible for the well-nested sequences, which can be generated844

using the Algorithm 5. The backtracking Algorithm 6 is discussed in the following845

example.846

Algorithm 5: Well-nested witness generation for MPDA

1 Function Witness(s1, s2,M = (S,∆, s0,Sf , n,Σ, Γ),WR):
Result: A sequence of transitions for a run resulting the well-nested

sequence WR

2 if s1 == s2 then
3 return ε;
4 if ∃t = (s1, nop, a, s2) ∈ ∆ then
5 return t;
6 forall s′, s′′ ∈ S do
7 if ((s1 6= s′) ∨ (s′′ 6= s2)) ∧ (s′, s′′) ∈ WR∧∃t = (s1, ↓i (α), a, s′) ∈ ∆∧

∃t2 = (s′′, ↑i (α), a′, s2) ∈ ∆ then
8 path=Witness(s′, s′′,M ,WR);
9 return t.path.t2;

10 forall s ∈ S do
11 if (s 6= s1 ∨ s 6= s2) ∧ (s, s1) ∈ WR ∧ (s, s2) ∈ WR then
12 path1=Witness(s1, s,M ,WR);
13 path2 = Witness(s, s2,M ,WR);
14 return path1.path2 ;

An Illustrating Example for Witness Generation847

We illustrate the multistack case on an example. Note that in figures illustrating848

examples, we use colored uparrows and downarrows with subscript for stacks,849

and a superscipt i representing the ith push or pop of the relevant colored stack.850

Assume that the path we obtain on back tracking is the reverse of Figure 3.851

Holes arising from pending pushes of stack 1 are red holes, and those from stack852

2 are blue holes in the figure. We have two red holes: the first red hole has a left853

end point ↓11, and right end point ws3. The second red hole has a left end point854

23

Algorithm 6: Non-well-nested witness generation for MPDA

1 Function HoleWitness(µ,M = (S,∆, s0,Sf , n,Σ, Γ),WR,AHSi,HSi):
Result: A sequence of transitions for an accepting run

2 global WitnessStacks = {Sti | i ∈ [n]}; \\Witness stacks for every

stack i

3 µp = Parent(µ); \\Parent function returns the parent node of µ in

the BFS exploration tree

4 opµ = ParentOp(µ); \\ParentOp function returns the operation

that extends Parent(µ) to µ in the BFS exploration tree

5 if opµ == ExtendByPopi(↑i α.wrpop) ∧ wrpop ∈ WR then
6 (i, s1, s2) = lastHolei(µp);
7 if (si, α, s2) ∈ AHSi ∧ (s1, α, s2) =↓i (α).wrpush ∧ wrpush ∈ WR then
8 push(Sti,#);
9 list = Witness(wrpush);

10 ∀t ∈ list, push(Sti, t);
11 push(Sti, ↓i (α));
12 listpop = Witness(wrpop);
13 return HoleWitness(µp).↑i (α).listpop;

14 else if
(si, α, s2) /∈ AHSi ∧ (i, si, s2) = (si, α, s3).(i, s3, s2) ∧ (s1, α, s3) ∈
AHSi ∧ (i, s3, s2) ∈ HSi ∧ (s1, α, s3) =↓i (α).wrpush ∧ wrpush ∈ WR

then
15 list = Witness(wrpush);
16 ∀t ∈ list, push(Sti, t);
17 push(Sti, ↓i (α));
18 listpop = Witness(wrpop);
19 return HoleWitness(µp).↑i (α).listpop;

20 if opµ == ExtendByHolei then
21 list = ε;
22 while pop(Sti) 6= # do
23 list = list.pop(Sti);
24 return HoleWitness(µp).list;

↓41, and right end point ↓51. The blue hole has left end point ↓12 and right end855

point ws4.856

1. From the final configuration sf , on backtracking, we obtain the pop operation857

(↑11). By the fixed-point algorithm, this operation closes the first red hole,858

matching the first pending push ↓11. In the BFS exploration tree, the parent859

node has the red atomic hole consisting of just the ↓11. Notice also that,860

in the parent node, this is the only red hole, since the second red hole in861

Figure 3 is closed, and hence does not exist in the parent node. We use two862

witness stacks, a red witness stack and a blue witness stack to track the863

information with respect to the red and blue holes. On encountering a pop864

transition closing a red hole, we populate the red witness stack with (i) a865

barrier signifying closure of a red hole, and (ii) the matching push transition866

↓11.867

24

s0

ws1

↓11 ↓21 ↓31
ws2 ws3 ws4 ws5

↓12 ↓22 ↑31 ↑21 ↓41 ↓51 ↑22 ↑51 ↑12 ↑41 ↑11 sf

Fig. 3. A run with 3 holes. The blue hole corresponds to the blue stack and the red
holes to the red stack. A final state is reached from ↑11 on a discrete transition.

2. Continuing with the backtracking, we obtain the pop operation ↑41, which,868

by the fixed-point algorithm, closes the second red hole. In the parent node,869

we have the atomic red hole consisting of just the ↓41. The red witness stack870

contains from bottom to top, #↓11. Since we encounter a closure of a red hole871

again, we push to the red witness stack, #↓41. This gives the content of the872

red witness stack as #↓11#↓41 from bottom to top. The next pop transition873

↑12 is processed the same way, populating the blue witness stack with #↓12.874

3. Continuing with backtracking, we have the pop transition ↑51. Since this is875

not closing the second red hole, but only shrinking it, we push ↓51 on top of876

the red witness stack (no barrier inserted). This gives the content of the red877

witness stack as #↓11#↓41↓51.878

4. We next have the pop transition ↑22, which by the fixed-point algorithm,879

shrinks the blue hole. The parent node has the blue hole with left end point880

↓12, and ends with the atomic hole segment ↓22ws4. We push onto the blue881

witness stack, this atomic hole obtaining the witness stack contents (bottom882

to top) #↓12↓22ws4.883

5. In the next step of backtracking, we are at a parent node using the create884

hole operation (creation of the second red hole). We pop the contents of the885

red witness stack till we hit a #, giving us the transitions ↓51↓41 in the reverse886

order.887

6. Next, on backtracking, we encounter the pop operation ↑21 along with a888

well-nested sequence ws5. We retrieve from this information, ws5, and using889

the Algorithm 5, obtain the sequence of transitions constituting ws5. The890

parent node has a hole segment with left end point ↓11, followed by the atomic891

hole segment ↓21ws2. We find the matching push transition as ↓21, and push892

the last atomic hole segment to the red witness stack, obtaining witness stack893

contents #↓11↓21ws2. The next pop operation ↑31 leads us to the next parent894

having a hole with left end point ↓11, and ending with the atomic hole ↓31ws3.895

We push this to the red witness stack obtaining #↓11↓21ws2↓31ws3 as the stack896

contents from bottom to top.897

7. Next, the backtracking leads us to the parent creating the blue hole. We pop898

the blue witness stack retrieving ws4 followed by the push transitions ↓22 and899

↓12. The transitions of ws4 are obtained from Algorithm 5.900

8. Continuing with the backtracking, we arrive at the transition which creates901

the first red hole. At this time, we pop the red witness stack until we hit a902

barrier. We obtain ws3, and then we retrieve the transition ↓31, followed by903

ws2, and the push transitions ↓21 and ↓11. Transitions of ws3, ws2 are retrieved904

using Algorithm 5.905

25

9. Further backtracking leads us to the parent obtained by extending with the906

well-nested sequence ws1. We retrieve the transitions in ws1 using Algorithm 5.907

The last backtracking lands us at the root [s0] and we are done.908

D Details for Section 5909

This part of the appendix is devoted to extending our algorithms for reachability910

and witness generation. We start by defining timed multistack push down911

automata. Then, Appendix E details the (binary) reachability and algorithms912

therein, whereas Appendix F describes the generation of a witness for TMPDA.913

Timed Multi-stack Pushdown Automata (TMPDA)914

For N ∈ N, we denote the set of numbers {1, 2, 3 · · ·N} as [N]. I denotes the set915

of closed intervals {I|I ⊆ R+}, such that the end points of the intervals belong916

to N. I also contains a special interval [0, 0]. We start by defining the model of917

timed multi-pushdown automata.918

Definition 3. A Timed Multi-pushdown automaton (TMPDA [16]) is a tuple919

M = (S, ∆, s0,Sf , X , n,Σ, Γ) where, S is a finite non-empty set of locations,920

∆ is a finite set of transitions, s0 ∈ S is the initial location, Sf ⊆ S is a set921

of final locations, X is a finite set of real valued variables known as clocks, n922

is the number of (timed) stacks, Σ is a finite input alphabet, and Γ is a finite923

stack alphabet which contains ⊥. A transition t ∈ ∆ can be represented as a tuple924

(s, ϕ, op, a, R, s′), where, s, s′ ∈ S are respectively, the source and destination925

locations of the transition t, ϕ is a finite conjunction of closed guards of the form926

x ∈ I represented as, (x ∈ I ′ ∧ y ∈ I ′′ . . .) for x, y ∈ X and I ′, I ′′ ∈ I, R ⊆ X is927

the set of clocks that are reset, a ∈ Σ is the label of the transition, and op is one928

of the following stack operations (1) nop, or no stack operation, (2) (↓i α) which929

pushes α ∈ Γ onto stack i ∈ [n], (3) (↑Ii α) which pops stack i if the top of stack930

i is α ∈ Γ and the time elapsed from the push is in the interval I ∈ I.931

A configuration of TMPDA is a tuple (s, ν, λ1, λ2, . . . , λn) such that, s ∈ S is932

the current location, ν : X → R is the current clock valuation and λi ∈ (Γ × R)∗933

represents the current content of ith stack as well as the age of each symbol, i.e.,934

the time elapsed since it was pushed on the stack. A pair (s, ν), where s is a935

location and ν is a clock valuation is called a state.936

The semantics of the TMPDA is defined as follows: a run σ is a sequence of937

alternating time elapse and discrete transitions from one configuration to another.938

The time elapses are non-negative real numbers, and, on discrete transitions, the939

valuation ν of the current configuration is checked to see if the clock constraints940

are satisfied; likewise, on a pop transition, the age of the symbol popped is checked.941

Projecting out the operations of a single stack from σ results in a well-nested942

sequence. A run is accepting if it starts from the initial state with all clocks set943

to 0, and reaches a final state with all stacks empty. The language accepted by944

a TMPDA is defined as the set of timed words generated by the accepting runs945

26

of the TMPDA. Since the reachability problem for TMPDA is Turing complete946

(this is the case even without time), we consider under-approximate reachability.947

A sequence of transitions is said to be complete if each push has a matching948

pop and vice versa. A sequence of transitions is said to be well-nested, denoted949

ws, if it is a sequence of nop-transitions, or a concatenation of well-nested950

sequences ws1ws2, or a well-nested sequence surrounded by a matching push-pop951

pair (↓iα) ws (↑Iiα). If we visualize this by drawing edges between pushes and952

their corresponding pops, well-nested sequences have no crossing edges, as in953

Bounded underapproximations for multistack timed pushdown systems 13

The witness algorithm uses k stacks to correctly implement the backtracking
procedure, to deal with k kinds of holes. We refer to these as witness stacks,
not to confuse with the stacks of the multistack system.

• Assume that the current pop operation is closing a hole of kind i. Search-
ing among possible push transitions, we identify the matching push
transition associated with this pop. On backtracking, this leads us to
a parent node with an atomic hole (see figure 3, the green atomic hole),
having a left end point as the push point, and the right end point as
the target of a ws (if any). We push onto the witness stack i, a bar-
rier (a delimiter symbol #) followed by ws and then the matching push
transition. The barrier is useful in segregating the contents of the wit-
ness stack, especially when we obtain two pop transitions of the same
stack ("1 and "5) in the reverse run which close two di↵erent holes
(the first blue hole and the second blue hole) of the same stack as in

Title Suppressed Due to Excessive Length 13

(the second blue hole and the first blue hole) of the same stack as in

26

Algorithm 12: Timed Automata Witness Generation

1 Function Witness((s1, v1), t, (s2, v2)):
Result: A sequence of transitions for an accepting run

2 forall s 2 S do
3 path = UselessPath(s1, s, v1);
4 if path 6= ; then
5 forall t1 2 [T] do
6 midPath = Witness((s, v1), t � t1, (s2, v2));
7 if midPath 6= ; then
8 return path ·t1·midPath;

9 forall � 2 � do
10 if UsefulTransition(�, v1) and Firable(�,(s, v1)) then
11 s3 = �.destination();
12 v3 = �.reset[v1];
13 midPath2 = Witness((s3, v3), t, (s2, v2));
14 if midPath2 6= ; then
15 return path ·t1·midPath2 ;

16 return path;

10.1 An Illustrating Example for Witness Generation

(s0, v0)

ws1

#1 #2 #3

ws2 ws3 ws4 ws5

#1 #2 "3 "2 #4 #5 "2 "5 "1 "4 "1 (sf , vf)

Fig. 6. A run with 3 holes. The blue holes correspond to stack 1, and the pink hole to
stack 2. A final state is reached from "1 on a discrete transition.

We illustrate the multistack case on an example. Assume that the path we
obtain on back tracking is as in Figure 6. Holes arising from pending pushes of
stack 1 are blue holes, and those from stack 2 are red holes in the figure. We
have two blue holes : the first blue hole has a left end point #1, and right end
point ws3. The second blue hole has a left end point #4, and right end point #5.
The pink hole has left end point #1 and right end point ws4.

1. From the final configuration (sf , vf), on backtracking, we obtain the pop
operation ("1). By the fixed point algorithm, this operation closes the first
blue hole, matching the first pending push #1. In the computation tree, the
parent node has the atomic blue hole consisting of just the #1. Notice also
that, in the parent node, this is the only blue hole, since the second blue hole
in figure 6 is closed, and hence does not exist in the parent node. We use
two witness stacks, a blue stack and a pink stack to track the information
with respect to the blue and pink holes. On encountering a pop transition

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node. As in the case above, we first identify the matching
push transition, and check if it agrees with the last atomic hole segment
in the parent. If so, we populate the witness stack i with the rightmost
atomic hole segment of the parent node (see figure 3). Each time we find a
pop on going up the run tree, we find the rightmost atomic hole segment
of the parent node, and keep pushing it on the stack, until we reach the
node which is obtained as a result of a hole creation. At this point, we
have completely recovered the entire hole information by backtracking,
and filling the stack with the atomic hole segments which constituted
this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

5 Experiments

We tested our implementation on di↵erent examples. Being first of its kind it
was di�cult for us to find proper benchmark examples to run and compare
our results. But we managed to get some well known examples from di↵erent
literatures. Most of them were untimed but we tried to add time in a relevant
way.

5.1 Bluetooth Driver [9]

Here we will first consider a Bluetooth device driver which uses two threads.
We will try to model this Bluetooth driver as shown in the Fig. 4. The driver
maintains a structure, and any thread can modify the values of the variables
in the structure. The variables in the structure can be listed as follows, a

See Appendix 9.1 for the full example.

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node (see Figure 3, the atomic green hole followed by the
atomic violet hole at the parent node of the atomic green hole). As in
the case above, we first identify the matching push transition, and check
if it agrees with the last atomic hole segment in the parent. If so, we
populate the witness stack i with the rightmost atomic hole segment of
the parent node (see Figure 3, the violet atomic segment is populated in
the stack). Each time we find a pop on going up the exploration graph,
we find the rightmost atomic hole segment of the parent node, and keep
pushing it on the stack, until we reach the node which is obtained as a
result of a hole creation. At this point, we have completely recovered the
entire hole information by backtracking, and filling the stack with the
atomic hole segments which constituted this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 9 shows an illustrating example.

and

Bounded underapproximations for multistack timed pushdown systems 13

The witness algorithm uses k stacks to correctly implement the backtracking
procedure, to deal with k kinds of holes. We refer to these as witness stacks,
not to confuse with the stacks of the multistack system.

• Assume that the current pop operation is closing a hole of kind i. Search-
ing among possible push transitions, we identify the matching push
transition associated with this pop. On backtracking, this leads us to
a parent node with an atomic hole (see figure 3, the green atomic hole),
having a left end point as the push point, and the right end point as
the target of a ws (if any). We push onto the witness stack i, a bar-
rier (a delimiter symbol #) followed by ws and then the matching push
transition. The barrier is useful in segregating the contents of the wit-
ness stack, especially when we obtain two pop transitions of the same
stack ("1 and "5) in the reverse run which close two di↵erent holes
(the first blue hole and the second blue hole) of the same stack as in

Title Suppressed Due to Excessive Length 13

(the second blue hole and the first blue hole) of the same stack as in

26

Algorithm 12: Timed Automata Witness Generation

1 Function Witness((s1, v1), t, (s2, v2)):
Result: A sequence of transitions for an accepting run

2 forall s 2 S do
3 path = UselessPath(s1, s, v1);
4 if path 6= ; then
5 forall t1 2 [T] do
6 midPath = Witness((s, v1), t � t1, (s2, v2));
7 if midPath 6= ; then
8 return path ·t1·midPath;

9 forall � 2 � do
10 if UsefulTransition(�, v1) and Firable(�,(s, v1)) then
11 s3 = �.destination();
12 v3 = �.reset[v1];
13 midPath2 = Witness((s3, v3), t, (s2, v2));
14 if midPath2 6= ; then
15 return path ·t1·midPath2 ;

16 return path;

10.1 An Illustrating Example for Witness Generation

(s0, v0)

ws1

#1 #2 #3

ws2 ws3 ws4 ws5

#1 #2 "3 "2 #4 #5 "2 "5 "1 "4 "1 (sf , vf)

Fig. 6. A run with 3 holes. The blue holes correspond to stack 1, and the pink hole to
stack 2. A final state is reached from "1 on a discrete transition.

We illustrate the multistack case on an example. Assume that the path we
obtain on back tracking is as in Figure 6. Holes arising from pending pushes of
stack 1 are blue holes, and those from stack 2 are red holes in the figure. We
have two blue holes : the first blue hole has a left end point #1, and right end
point ws3. The second blue hole has a left end point #4, and right end point #5.
The pink hole has left end point #1 and right end point ws4.

1. From the final configuration (sf , vf), on backtracking, we obtain the pop
operation ("1). By the fixed point algorithm, this operation closes the first
blue hole, matching the first pending push #1. In the computation tree, the
parent node has the atomic blue hole consisting of just the #1. Notice also
that, in the parent node, this is the only blue hole, since the second blue hole
in figure 6 is closed, and hence does not exist in the parent node. We use
two witness stacks, a blue stack and a pink stack to track the information
with respect to the blue and pink holes. On encountering a pop transition

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node. As in the case above, we first identify the matching
push transition, and check if it agrees with the last atomic hole segment
in the parent. If so, we populate the witness stack i with the rightmost
atomic hole segment of the parent node (see figure 3). Each time we find a
pop on going up the run tree, we find the rightmost atomic hole segment
of the parent node, and keep pushing it on the stack, until we reach the
node which is obtained as a result of a hole creation. At this point, we
have completely recovered the entire hole information by backtracking,
and filling the stack with the atomic hole segments which constituted
this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

5 Experiments

We tested our implementation on di↵erent examples. Being first of its kind it
was di�cult for us to find proper benchmark examples to run and compare
our results. But we managed to get some well known examples from di↵erent
literatures. Most of them were untimed but we tried to add time in a relevant
way.

5.1 Bluetooth Driver [9]

Here we will first consider a Bluetooth device driver which uses two threads.
We will try to model this Bluetooth driver as shown in the Fig. 4. The driver
maintains a structure, and any thread can modify the values of the variables
in the structure. The variables in the structure can be listed as follows, a

See Appendix 10.1 for the full example.

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node (see Figure 3, the atomic green hole followed by the
atomic violet hole at the parent node of the atomic green hole). As in
the case above, we first identify the matching push transition, and check
if it agrees with the last atomic hole segment in the parent. If so, we
populate the witness stack i with the rightmost atomic hole segment of
the parent node (see Figure 3, the violet atomic segment is populated in
the stack). Each time we find a pop on going up the exploration graph,
we find the rightmost atomic hole segment of the parent node, and keep
pushing it on the stack, until we reach the node which is obtained as a
result of a hole creation. At this point, we have completely recovered the
entire hole information by backtracking, and filling the stack with the
atomic hole segments which constituted this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

, where we have two stacks, depicted with red and violet edges.954

We emphasize that a well-nested sequence can have well-nested edges from any955

stack. In a sequence σ, a push (pop) is called a pending push (pop) if its956

matching pop (push) is not in the same sequence σ. For TMPDA every sequence957

also carries total time elapsed during the sequence, this is helpful to check stack958

constraints, and it is sufficient to store time till the maximum stack constraint,959

i.e., the maximum constant value that appeared in the stack constraints.960

Tree Width of Bounded Hole TMPDA961

We will capture the behaviour(any run ρ) of K−hole bounded multistack962

pushdown systems as a graph G where, every node represents a transition963

t ∈ ∆ and the edge between the nodes can be of three types.964

– Linear order(4) between the transition which gives the order in which the965

transitions are fired. We will use 4+ to represent transitive closure of 4.966

– Timing relations yc∈I ∈ 4+ ∀c ∈ X and I ∈ I such that, t1 yc∈I t2 if and967

only if the clock constraint c ∈ I is checked in the transition t2 and t1 4+ t2968

has the latest reset of clock c with respect to t2.969

– The other type of edges represent the push pop relation between two970

transitions. Which means, if a transition t1 have a push operation in any one971

of the stack i and transition t2 has pop transition of the stack i which matches972

with the push transition at t1, then we have an edge t1 ys t2 between them,973

which will represent the stack edge.974

To prove that the tree width of the class of graph G is bounded, we will use975

coloring game [17] and show that we need bounded number of colors to split any976

graph g ∈ G to atomic tree terms.977

Eve will start from the right most node of the graph by coloring it. The last978

node of the graph can be any one of the following,979

– End point of a well-nested sequence980

– Pop transition tpp of stack i , such that, the push tps is coming from nearest981

hole of stack i.982

1. If the end point colored is the end point of a well-nested sequence then Eve983

can remove the well-nested sequence by adding another color to the first984

point of the well-nested sequence. But, there may be some transitions t in the985

well-nested sequence with clock constraints c ∈ I such that, the recent reset986

27

of the clock c, with respect to t is in the left of the well nested sequence. In987

order to remove the well-nested sequence she have to color the nodes which988

represent the transitions with recent reset points of the clocks c ∈ X . This989

step require at most |X | colors. Now, she can split the graph in two parts,990

one of them will be well-nested with two end points colored. Also, the clock991

constraint edges, which are coming from the left of the well-nested sequence992

are hanging in the left, are colored. There can be at most |X | hanging colored993

points possible in the left of the well-nested sequence. The other part will be994

the remaining graph with the right most point colored along with the colored995

recent reset points on the left of right most colored point. which are also the996

hanging points of the previous partition.997

If we look at the well-nested part with hanging clock edges, using just one998

more color we can split it to atomic tree terms [17].999

But the other part still remains a graph of class G so Adam will choose this1000

partition for Eve to continue the coloring game.1001

2. If the last point of the graph G is a pop point tpp as discussed earlier, then1002

the corresponding push tps can come from a open hole or a closed hole.1003

– If it is coming from a closed hole then, Eve will add color to the1004

corresponding push tps along with the transition tq such that, tps 4+ tq1005

and tps− tq is a well-nested sequence, which forms a atomic hole segment1006

(↑ ws) where, ↑ represents the push pop edge tps ys tpp and ws represents1007

the well-nested sequence tps − tq. But just as we discussed in previous1008

scenario of removing well-nested sequence, there may be some clock1009

constraint c ∈ X in the well-nested sequence ws such that the transition1010

with the recent resets are from the left of (↑ ws) and without coloring1011

them Eve can not remove the (↑ ws). Similarly, there may be some clock1012

resets inside ↑ ws from which there are clock constraint edges are going1013

to the right of ↑ ws. Eve has to color all those points inside the ↑ ws1014

which corresponds to those clock reset points in ↑ ws. So, she have to1015

color at most 2|X | reset points to remove the stack edge t1 y t2 along1016

with the well-nested sequence tps− tq(↑ ws), which makes the closed hole1017

open with colors in both ends of hole and at most |X | colors in the left1018

of the hole and at most |X | colored hanging points inside the hole. This1019

operation requires 2 + 2|X | more colors. Please note that, the right end1020

of the hole which got colored after removal of tps − tq is another push of1021

the hole, because hole are defined as a sequence (↑ ws)+.1022

– If the push is coming from open hole then the push transition tps must1023

be colored from previous operation as discussed above, hence Eve will1024

add another color tq′ to mark the next well-nested sequence tps− tq′(ws′)1025

in the right of tps. But, similar to above section here also there may be1026

some clock resets of clock i ∈ X inside the ws′ which is being checked1027

in the right of the ws′. These reset points can be at most |X | and needs1028

|X | colors. Now, Eve can remove the stack edge tpp y tps along with the1029

well-nested sequence ws′. This operation widens the hole. Note that at1030

any point of the game, hanging clock reset points inside the hole and1031

in left side of hole is bounded by |X |. This operation requires at most1032

28

1 + |X | colors but subsequent application of this operation can reuse1033

colors.1034

In both the above operations, we can split the graph in two parts, one with1035

a stack edge tpp y tps and a well-nested sequence, with at most |X | hanging1036

points for each clock in the left of the tpp and at most |X | colors inside the1037

ws. which require at most 1 color to split into atomic tree terms without any1038

extra colors. On the remaining part Eve will continue playing the game from1039

right most point.1040

Here, we claim that at any point of time of the coloring game, there will be1041

2K + (2K + 1)|X | + 2 active colors for K ≥ 1 and K ∈ N. Every step of the1042

game splits the graph in two part, and one part always can be split into atomic1043

tree terms with at most 2|X |+ 3 colors. The remaining part will require 2 + 2|X |1044

colors for every open hole in the left of the right most point of the graph. As the1045

number of open hole is bounded by K, so we can not have more than K open1046

holes in the left of any point. So, 2K + 2K|X | colors to mark the holes, 1 + |X |1047

for the right most point and recent reset points with respect to the right most1048

point, 1 + |X | for coloring the well-nested sequence after a matched push and the1049

possible reset points inside the well-nested sequence, but we will need to color1050

such well-nested sequence once at any point of time, which gives a total color of1051

2K(|X |+ 1) + 2(|X |+ 1) = (2K + 2)(|X |+ 1).1052

E Reachability in TMPDA1053

In this section, we discuss how the BFS tree exploration extends in the timed1054

setting. To begin, we talk about how a list at any node in the tree looks like.1055

Representation of Lists for BFS Tree1056

Each node of the BFS tree stores a list of bounded length. A list is a sequence of1057

states (s, ν) separated by time elapses (t), representing a K-hole bounded run in1058

a concise form. The simplest kind of list is a single state (s, ν) or a well-nested1059

sequence (s, ν, t, si, νi) with time elapse t. Note that because of time constraints1060

we need to store total time elapsed to reach one state from another. This is1061

why we are keeping a time stamp between two states. Recall, the hole in MPDA1062

is defined as a tuple (i, s, s′). For TMPDA we need to store total time elapsed1063

in the hole as well, so it can be represented as a tuple H = (i, s, ν, s′, ν′, th),1064

where, th is the time elapse in the hole and (s, ν), (s′, ν′)s′ being the end states1065

of the hole. Also, the maximum possible value of time stamp is bounded by the1066

maximum integer value in the constraints (both pop and clock). So, the total1067

possible values that the variable ti can take is also bounded. Let H, t represent1068

respectively holes (of some stack) and time elapses. A list with holes has the form1069

(s0, ν0).t.(H)∗(H.t.(s′, ν′)). For example, a list with 3 holes of stacks i, j, k is1070

[(s0, ν0), t1,(i, s1, ν1, s2, ν2, t2),t3,(j, s3, ν3, s4, ν4, t4),t5,(k, s5, ν5, s6, ν6, t6),t7, (s7, ν7)]1071

29

Algorithm 7: Algorithm for Emptiness Checking of hole bounded
TMPDA
1 Function IsEmptyTimed(M = (S, ∆, s0,Sf , X , n,Σ, Γ), K):

Result: True or False
2 WRT := WellNestedReachTimed(M); \\Solves binary reachability for pushdown system
3 if some (s0, ν0, t, s1, ν1) ∈ WRT with s1 ∈ Sf then
4 return False;
5 forall i ∈ [n] do
6 AHSTi := ∅;
7 forall (s, φ, ↓i(α), ρ, a, s1) ∈ ∆, ν |= φ, and ν1 = ρ[ν] do
8 forall (s1, ν1, t, s

′, ν′) ∈ WRT do
9 AHSTi := AHSTi ∪ (i, s, ν, α, s′, ν′, t);

10 Seti := {(s, ν, t, s′, ν′) | ∃α(i, s, ν, α, s′, ν′, t) ∈ AHSi};
11 HSi := {(i, s, ν, s′, ν′, t) | (s, ν, t, s′, ν′) ∈ TransitiveClosure(Seti)};
12 µ := [s0, ν0];
13 µ.NumberOfHoles := 0;
14 SetOfListsnew := {µ}, SetOfListsold := ∅;
15 while SetOfListsnew \ SetOfListsold 6= ∅ do
16 SetOfListsdiff := SetOfListsnew \ SetOfListsold;
17 SetOfListsold := SetOfListsnew;

18 forall µ′ ∈ SetOfListsdiff do

19 if µ′.NumberOfHoles < K then
20 forall i ∈ [n] do
21 SetOfListsh := AddHoleTimedi (µ′, HSTi); \\Add hole for stack i
22 forall µ2 ∈ SetOfListsh do
23 SetOfListsnew := SetOfListsnew ∪ µ2;

24 if µ′.NumberOfHoles > 0 then
25 forall i ∈ [n] do
26 SetOfListsp:= AddPopTimedi (µ′,M,AHSTi, HSTi,WRT); \\Add pop

for stack i
27 forall µ3 ∈ SetOfListsp do
28 if µ3.last ∈ Sf and µ3.NumberOfHoles = 0 then
29 return False; \\If reached destination state
30 SetOfListsnew := SetOfListsnew ∪ µ3;

31 return True;

Algorithm 8: States

1 Function States(M = (S,∆, s0,Sf , X , n,Σ, Γ)):
Result: F

2 F := {(s, ν) | ∀s ∈ S ∧ ∀c ∈ X , ν[c] ≤ max(c) + 1};
3 return F ;

Algorithms for TMPDA1072

The function TimeElapse returns the states which are reachable from the state1073

(s1, ν1) via time elapse. It also stores the total time elapsed to reach the state.1074

This function is only useful for timed systems.1075

30

alg:tlapse

Algorithm 9: Time Elapse

1 Function TimeElapse((s1, ν1)):
Result: Set

2 Set := ∅;
3 t := 0;
4 while t ≤ cmax do
5 ∀i ∈ X : ν2[i] := Min(ν1[i] + t, ci);
6 Set := Set ∪ (s1, ν1, t, s1, ν2) ;
7 t := t+ 1;

8 return Set;

Algorithm 10: Well Nested Reach Timed

1 Function WellNestedReachTimed(M = (S,∆, s0,Sf , X , n,Σ, Γ)):
Result: WRT := {(s, ν, t, s′, ν′)|(s′, ν′) is reachable from (s, ν) by time elapse

t via a well-nested sequence}
2 F = States(M);
3 Set = {(s, ν, p, s, ν) | (s, ν) ∈ F};
4 forall (s, ν) ∈ F do
5 Set = Set∪TimeElapse((s, ν));
6 forall (s, ϕ, nop, a, R, s′) ∈ ∆ with ν |= φ do
7 Set := Set ∪ (s, ν, 0, s′, R[ν])

8 Rtc= TransitiveClosureTimed(Set);
9 while True do

10 WRT := Rtc;
11 forall (s, φ1, ↓i(α), ρ1, a, s1) ∈ ∆ and (s, ν) ∈ F with ν |= φ1 do
12 forall (s1, ρ1[ν], t, s2, ν2) ∈ Rtc do
13 forall (s2, φ2, ↑Ii (α), ρ2, a, s

′) ∈ ∆ with ν2 |= φ2, t ∈ I do
14 Rtc := Rtc ∪ (s, ν, t, s′, ρ2[ν2]);

15 Rtc:= TransitiveClosureTimed(Rtc);
16 if Rtc \ WRT = ∅ then
17 break;

18 return WRT ;

Algorithm 11: Add Hole Timed

1 Function AddHoleTimedi(µ,HSTi):
Result: Set = { µ| µ is a list of states and time elapses}

2 Set := ∅;
3 (s, ν) := last(µ);
4 forall (i, s, ν, t, s′, ν′) ∈ HSTi do
5 µ′ = copy(µ);
6 trunc(µ′); /* trunc(µ) is defined as remove(last(µ))) */
7 µ′.append[(i, s, ν, t, s′, ν′), 0, (s′, ν′)];
8 µ′.NumberOfHoles := µ.NumberOfHoles + 1;
9 Set := Set ∪ {µ′};

10 return Set;

31

Algorithm 12: Extend with a pop Timed

1 Function
AddPopTimedi(µ,M = (S,∆, s0,Sf ,X , n,Σ, Γ), AHSTi, HSTi, WRT):

Result: Set = { µ | µ is a list of states and time elapses}
2 Set := ∅;
3 [tl, (s, ν)] := last(µ);
4 [t′, (i, s1, ν1, t, s3, ν3), t′′] := lastHolei(µ);
5 t3 := The sum of the time elapses in the list µ between (s2, ν2)Ri and (s, ν);
6 forall (i, s1, ν1, t1, s2, ν2) ∈ HSTi, (i, s2, ν2, t2, α, s3, ν3) ∈ AHSTi,

(s, φ,R, ↑Ii (α), s′) ∈ ∆ with t = t1 + t2, ν |= φ and t2 + t3 ∈ I, and
(s′, R[ν], t4, s

′′, ν′′) ∈ WRT do
7 µ′ = copy(µ);
8 trunc(µ′);
9 µ′.append([tl ⊕ t4, (s′′, ν′′)];

10 µ′.replace([t′, (i, s1, ν1, t, s3, ν3), t′′],
[t′, (i, s1, ν1, t1, s2, ν2), t2 ⊕ t′′]);

11 Set := Set ∪ {µ′};
12 if t1 = 0 and (s1, ν1) = (s2, ν2) then
13 µ′′ = copy(µ);
14 trunc(µ′′);
15 µ′′.append([tl ⊕ t4, (s′′, ν′′));
16 µ′′.replace([t′, (i, s1, ν1, t, s3, ν3), t′′], (t′ ⊕ t⊕ t′′));
17 µ′′.NumberOfHoles = µ.NumberOfHoles− 1;
18 Set := Set ∪ {µ′};
19 return Set;

32

F Witness Generation for TMPDA1076

In this section, we focus on the important question of generating a witness for1077

an accepting run whenever our fixed-point algorithm guarantees non-emptiness.1078

Since we use fixed-point computations to speed up our reachability algorithm,1079

finding a witness, i.e., an explicit run witnessing reachability, becomes non-trivial.1080

In fact, the difficulty of the witness generation depends on the system under1081

consideration : while it is reasonably straight-forward for timed automata with1082

no stacks, it is quite non-trivial when we have (multiple) stacks with non-well1083

nested behavior.1084

Algorithm 13: Well-nested Timed Witness Generation

1 Function WitnessTimedWR(s1, s2, ν,M = (S,∆, s0,Sf , X , n,Σ, Γ),WRT):
Result: A sequence of transitions for an accepting run

2 if s1 == s2 then
3 return ε;
4 if ∃t = (s, φ,R, nop, s′) ∈ ∆ ∧ ν |= φ ∧ ν = R[ν] then
5 return t;
6 forall s′, s′′ ∈ S do
7 if ((s1 6= s′) ∨ (s′′ 6= s2)) ∧ (s′, s′′) ∈ WRT

∧∃t = (s1, φ, R, ↓i (α), a, s′) ∈ ∆∧
∃t2 = (s′′, φ′, R′, ↑i (α), a′, s2) ∈ ∆∧ ν = R[ν] = R[ν′]∧ ν |= φ∧ ν |= φ′

then
8 path=WitnessTimedWR(s′, s′′, ν,M ,WRT);
9 return t.path.t2;

10 forall s ∈M.S do
11 if (s 6= s1 ∨ s 6= s2) ∧ (s, 0, s1) ∈ WRT ∧ (s, 0, s2) ∈ WRT then
12 path1=WitnessTimedWR(s1, s, ν,M ,WRT);
13 path2 = WitnessTimedWR(s, s2, ν,M ,WRT);
14 return path1.path2 ;

0-holes. We start discussing the witness generation in the case of timed automata.1085

As described in the algorithm in section 3, non-emptiness is guaranteed if a final1086

state (sf , νf) is reached from the initial state (s0, ν0) by computing the transitive1087

closure of the transitions. The transitive closure computation results in generating1088

a tuple (s0, ν0, t, sf , νf) ∈ WRT (Algorithm 10), for some time 0 ≤ t ∈ R. Notice1089

however that, in the Algorithms 10, we do not keep track of the sequence1090

of states that led to the final state, and this is why we need to reconstruct a1091

witness. To generate a witness run, we consider a normal form for any run in1092

the underlying timed automaton, and check for the existence of a witness in the1093

normal form. A run is in the normal form if it is a sequence of time-elapse, useful,1094

and useless transitions. Time-elapse transitions have already been explained1095

earlier. A discrete transition (s, ν)→ (s′, ν′) is useful if ν 6= ν′ , that is, there is1096

at least one clock x such that ν′(x) = 0 and ν(x) 6= 0. A discrete transition is1097

useless if ν = ν′.1098

33

Algorithm 14: Timed Pushdown Automata Witness Generation
1 Function Witness((s1, ν1), t, (s2, ν2),M = (S, ∆, s0,Sf , X , n,Σ, Γ),WRT):

Result: A sequence of transitions for an accepting run
2 forall t1 ∈ [T] do
3 midPath = Witness((s1, ν1 + t1), t− t1, (s2, ν2),M, WRT) Progress Measure 1;
4 if midPath 6= ∅ then
5 return t1·midPath;

6 forall δ = (s′′, φ′, R′, nop, a′, s2) ∈M.∆ do
7 if δ.R′[ν1] 6= ν1 and ν1 |= δ.φ′) then
8 s3 = δ.s2;

9 ν3 = δ.R′[ν1];
10 midPath2 = Witness((s3, ν3), t, (s2, ν2),M, WRT) Progress Measure 2;
11 if midPath2 6= ∅ then
12 return δ·midPath2 ;

13 forall s ∈M.S do
14 path = WitnessTimedWR(s1, s, ν1,M,WRT) Progress Measure 3;
15 if path 6= ∅ then
16 midPath3 = Witness((s, ν1), t, (s2, ν2),M,WRT);
17 if midPath3 6= ∅ then
18 return path · midPath3 ;

If a tuple (s0, ν0, t, sf , νf), t ≥ 0 is generated by Algorithm 10, we know1099

that the system is non-empty. Now, we describe an algorithm to generate the1100

witness run for obtaining (s0, ν0, t, sf , νf), by associating a lexicographic progress1101

measure while exploring runs starting from (s0, v0). Integral time elapses, useful1102

transitions and useless transitions are the three entities constituting the progress1103

measure, ordered lexicographically.1104

– First we check if it is possible to obtain a witness run of the form (s0, ν0)
t1 1105

(s, ν)
t2 (sf , νf), where

t
 denotes a sequence of transitions whose total time1106

elapse is t. In case t1, t2 > 0, with t1 + t2 = t, we can recurse on obtaining1107

witnesses to reach (s, ν) from (s0, ν0), and (sf , νf) from (s, ν), with strictly1108

smaller time elapses, guaranteeing progress to termination.1109

– In case t1 = 0 or t2 = 0, we move to the second component of our progress1110

measure, namely useful transitions. Assume t2 = 0. Then indeed, there1111

is no time elapse in reaching (sf , νf) from (s, ν), but only a sequence of1112

discrete transitions. Let #X(ν) denote the number of non-zero entries in the1113

valuation ν. To obtain the witness, we look at a maximal sequence of useful1114

transitions from (s, ν) of the form (s, ν) → (s1, ν1) → . . . → (sk, νk) such1115

that #X(ν) > #X(ν1) > · · · > #X(νk), where k ≤ the number of clocks.1116

When we reach some (si, νi) from where we cannot make a useful transition,1117

we go for a useless transition. Since there is no time elapse, and no useful1118

resets, the clock valuations do not change on discrete transitions. We are left1119

with enumerating all the locations to check the reachability to sf (or to some1120

sj , from where we can again have a maximal sequence of useful transitions).1121

Indeed, if (sf , νf) is reachable from (s, ν) with no time elapse, there is a path1122

having at most |X | useful transitions, interleaved with a sequence of useless1123

transitions.1124

Generation of witness for timed automata is given in Algorithm 14. Notice that1125

when κ = (s0, v0, 0, sf , vf), the progress measure is m(κ) = #X(ν0) −#X(νf).1126

34

If m(κ) = 0, then ν0 = νf , and the path takes only useless transitions. In this1127

case, we consider the graph with nodes as states (s, ν), and there is an edge1128

from (s1, ν1) to (s2, ν2) if there is a transition (s1, ϕ,R, s2) such that ν1 |= ϕ1129

and ν1[R] = ν1, that is, for all x ∈ R, ν1(x) = 0. If m(κ) 6= 0, then we take at1130

least one useful transition. We can check if there exists a transition (s1, ϕ,R, s2)1131

such that s1 is reachable from s0, and ν0 |= ϕ, ν0[R] 6= ν0, and the tuple1132

κ′ = (s2, ν0[R], 0, sf , νf) ∈ WRT. In this case, we have m(κ′) < m(κ) and we can1133

conclude by induction.1134

The case of a timed pushdown system with a single stack is similar to the1135

case of timed automata, except for the fact that a discrete transition may1136

involve push/pop operations. We use the same progress measures as in the timed1137

automaton case, using the notion of runs in normal form.1138

Getting Witness from Holes. We can extend the backtracking algorithm for1139

witness generation for MPDA to generate witness for TMPDA without much1140

modification. In timed settings we need to take care of the time elapses within a1141

hole and an atomic hole segment. When a hole is partitioned to an atomic hole1142

segment and a hole, the time must be partitioned satisfying possible atomic hole1143

segments and holes along with other constraints.1144

35

	Revisiting Underapproximate Reachability for Multipushdown Systems

